skip to main content

Title: Variation in the flowering time orthologs BrFLC and BrSOC1 in a natural population of Brassica rapa

Understanding the genetic basis of natural phenotypic variation is of great importance, particularly since selection can act on this variation to cause evolution. We examined expression and allelic variation in candidate flowering time loci inBrassica rapaplants derived from a natural population and showing a broad range in the timing of first flowering. The loci of interest were orthologs of the Arabidopsis genesFLCandSOC1(BrFLCandBrSOC1, respectively), which in Arabidopsis play a central role in the flowering time regulatory network, withFLCrepressing andSOC1promoting flowering. InB. rapa, there are four copies ofFLCand three ofSOC1. Plants were grown in controlled conditions in the lab. Comparisons were made between plants that flowered the earliest and latest, with the difference in average flowering time between these groups ∼30 days. As expected, we found that total expression ofBrSOC1paralogs was significantly greater in early than in late flowering plants. Paralog-specific primers showed that expression was greater in early flowering plants in theBrSOC1paralogsBr004928, Br00393andBr009324, although the difference was not significant inBr009324. Thus expression of at least 2 of the 3BrSOC1orthologs is consistent with their predicted role in flowering time in this natural population. Sequences of the promoter regions of theBrSOC1orthologs were variable, but there was no association between allelic variation at these more » loci and flowering time variation. For theBrFLCorthologs, expression varied over time, but did not differ between the early and late flowering plants. The coding regions, promoter regions and introns of these genes were generally invariant. Thus theBrFLCorthologs do not appear to influence flowering time in this population. Overall, the results suggest that even for a trait like flowering time that is controlled by a very well described genetic regulatory network, understanding the underlying genetic basis of natural variation in such a quantitative trait is challenging.

« less
Authors:
 ;  ;  ;  ;  ;  ;  ;  
Publication Date:
NSF-PAR ID:
10012467
Journal Name:
PeerJ
Volume:
3
Page Range or eLocation-ID:
Article No. e1339
ISSN:
2167-8359
Publisher:
PeerJ
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Key message

    A population of lettuce that segregated for photoperiod sensitivity was planted under long-day and short-day conditions. Genetic mapping revealed two distinct sets of QTLs controlling daylength-independent and photoperiod-sensitive flowering time.

    Abstract

    The molecular mechanism of flowering time regulation in lettuce is of interest to both geneticists and breeders because of the extensive impact of this trait on agricultural production. Lettuce is a facultative long-day plant which changes in flowering time in response to photoperiod. Variations exist in both flowering time and the degree of photoperiod sensitivity among accessions of wild (Lactuca serriola) and cultivated (L. sativa) lettuce. An F6populationmore »of 236 recombinant inbred lines (RILs) was previously developed from a cross between a late-flowering, photoperiod-sensitiveL. serriolaaccession and an early-flowering, photoperiod-insensitiveL. sativaaccession. This population was planted under long-day (LD) and short-day (SD) conditions in a total of four field and screenhouse trials; the developmental phenotype was scored weekly in each trial. Using genotyping-by-sequencing (GBS) data of the RILs, quantitative trait loci (QTL) mapping revealed five flowering time QTLs that together explained more than 20% of the variation in flowering time under LD conditions. Using two independent statistical models to extract the photoperiod sensitivity phenotype from the LD and SD flowering time data, we identified an additional five QTLs that together explained more than 30% of the variation in photoperiod sensitivity in the population. Orthology and sequence analysis of genes within the nine QTLs revealed potential functional equivalents in the lettuce genome to the key regulators of flowering time and photoperiodism,FDandCONSTANS, respectively, in Arabidopsis.

    « less
  2. In flowering plants, the asymmetrical division of the zygote is the first hallmark of apical-basal polarity of the embryo and is controlled by a MAP kinase pathway that includes the MAPKKK YODA (YDA). InArabidopsis, YDA is activated by the membrane-associated pseudokinase SHORT SUSPENSOR (SSP) through an unusual parent-of-origin effect:SSPtranscripts accumulate specifically in sperm cells but are translationally silent. Only after fertilization is SSP protein transiently produced in the zygote, presumably from paternally inherited transcripts.SSPis a recently diverged, Brassicaceae-specific member of theBRASSINOSTEROID SIGNALING KINASE(BSK) family. BSK proteins typically play broadly overlapping roles as receptor-associated signaling partners in various receptor kinase pathwaysmore »involved in growth and innate immunity. This raises two questions: How did a protein with generic function involved in signal relay acquire the property of a signal-like patterning cue, and how is the early patterning process activated in plants outside the Brassicaceae family, whereSSPorthologs are absent? Here, we show thatArabidopsis BSK1andBSK2, two close paralogs ofSSPthat are conserved in flowering plants, are involved in several YDA-dependent signaling events, including embryogenesis. However, the contribution of SSP to YDA activation in the early embryo does not overlap with the contributions of BSK1 and BSK2. The loss of an intramolecular regulatory interaction enables SSP to constitutively activate the YDA signaling pathway, and thus initiates apical-basal patterning as soon as SSP protein is translated after fertilization and without the necessity of invoking canonical receptor activation.

    « less
  3. The underlying genetic changes that regulate the appearance and disappearance of repeated traits, or serial homologs, remain poorly understood. One hypothesis is that variation in genomic regions flanking master regulatory genes, also known as input–output genes, controls variation in trait number, making the locus of evolution almost predictable. Another hypothesis implicates genetic variation in up- or downstream loci of master control genes. Here, we use the butterfly Bicyclus anynana , a species that exhibits natural variation in eyespot number on the dorsal hindwing, to test these two hypotheses. We first estimated the heritability of dorsal hindwing eyespot number by breedingmore »multiple butterfly families differing in eyespot number and regressing eyespot numbers of offspring on midparent values. We then estimated the number and identity of independent genetic loci contributing to eyespot number variation by performing a genome-wide association study with restriction site-associated DNA sequencing from multiple individuals varying in number of eyespots sampled across a freely breeding laboratory population. We found that dorsal hindwing eyespot number has a moderately high heritability of ∼0.50 and is characterized by a polygenic architecture. Previously identified genomic regions involved in eyespot development, and novel ones, display high association with dorsal hindwing eyespot number, suggesting that homolog number variation is likely determined by regulatory changes at multiple loci that build the trait, and not by variation at single master regulators or input–output genes.« less
  4. null (Ed.)
    Plants produce diverse metabolites to cope with the challenges presented by complex and ever-changing environments. These challenges drive the diversification of specialized metabolites within and between plant species. However, we are just beginning to understand how frequently new alleles arise controlling specialized metabolite diversity and how the geographic distribution of these alleles may be structured by ecological and demographic pressures. Here we measure the variation in specialized metabolites across a population of 797 natural Arabidopsis thaliana accessions. We show a combination of geography, environmental parameters, demography, and different genetic processes all combine to influence the specific chemotypes and their distribution.more »This showed that causal loci in specialized metabolism contain frequent independently generated alleles with patterns suggesting potential within species convergence. This provides a new perspective about the complexity of the selective forces and mechanisms that shape the generation and distribution of allelic variation that may influence local adaptation.« less
  5. Many organisms enter a dormant state in their life cycle to deal with predictable changes in environments over the course of a year. The timing of dormancy is therefore a key seasonal adaptation, and it evolves rapidly with changing environments. We tested the hypothesis that differences in the timing of seasonal activity are driven by differences in the rate of development during diapause in Rhagoletis pomonella , a fly specialized to feed on fruits of seasonally limited host plants. Transcriptomes from the central nervous system across a time series during diapause show consistent and progressive changes in transcripts participating inmore »diverse developmental processes, despite a lack of gross morphological change. Moreover, population genomic analyses suggested that many genes of small effect enriched in developmental functional categories underlie variation in dormancy timing and overlap with gene sets associated with development rate in Drosophila melanogaster . Our transcriptional data also suggested that a recent evolutionary shift from a seasonally late to a seasonally early host plant drove more rapid development during diapause in the early fly population. Moreover, genetic variants that diverged during the evolutionary shift were also enriched in putative cis regulatory regions of genes differentially expressed during diapause development. Overall, our data suggest polygenic variation in the rate of developmental progression during diapause contributes to the evolution of seasonality in R. pomonella . We further discuss patterns that suggest hourglass-like developmental divergence early and late in diapause development and an important role for hub genes in the evolution of transcriptional divergence.« less