skip to main content


Title: Metatranscriptomic analysis of a high-sulfide aquatic spring reveals insights into sulfur cycling and unexpected aerobic metabolism

Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring’s source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM) of oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons.

 
more » « less
NSF-PAR ID:
10012763
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
PeerJ
Date Published:
Journal Name:
PeerJ
Volume:
3
ISSN:
2167-8359
Page Range / eLocation ID:
Article No. e1259
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sousa, Filipa L. ; Schleper, Christa M. (Ed.)
    ABSTRACT Life emerged and diversified in the absence of molecular oxygen. The prevailing anoxia and unique sulfur chemistry in the Paleo-, Meso-, and Neoarchean and early Proterozoic eras may have supported microbial communities that differ from those currently thriving on the earth’s surface. Zodletone spring in southwestern Oklahoma represents a unique habitat where spatial sampling could substitute for geological eras namely, from the anoxic, surficial light-exposed sediments simulating a preoxygenated earth to overlaid water column where air exposure simulates oxygen intrusion during the Neoproterozoic era. We document a remarkably diverse microbial community in the anoxic spring sediments, with 340/516 (65.89%) of genomes recovered in a metagenomic survey belonging to 200 bacterial and archaeal families that were either previously undescribed or that exhibit an extremely rare distribution on the current earth. Such diversity is underpinned by the widespread occurrence of sulfite, thiosulfate, tetrathionate, and sulfur reduction and the paucity of sulfate reduction machineries in these taxa. Hence, these processes greatly expand lineages mediating reductive sulfur-cycling processes in the tree of life. An analysis of the overlaying oxygenated water community demonstrated the development of a significantly less diverse community dominated by well-characterized lineages and a prevalence of oxidative sulfur-cycling processes. Such a transition from ancient novelty to modern commonality underscores the profound impact of the great oxygenation event on the earth’s surficial anoxic community. It also suggests that novel and rare lineages encountered in current anaerobic habitats could represent taxa that once thrived in an anoxic earth but have failed to adapt to earth’s progressive oxygenation. IMPORTANCE Life on earth evolved in an anoxic setting; however, the identity and fate of microorganisms that thrived in a preoxygenated earth are poorly understood. In Zodletone spring, the prevailing geochemical conditions are remarkably similar to conditions prevailing in surficial earth prior to oxygen buildup in the atmosphere. We identify hundreds of previously unknown microbial lineages in the spring and demonstrate that these lineages possess the metabolic machinery to mediate a wide range of reductive sulfur processes, with the capacity to respire sulfite, thiosulfate, sulfur, and tetrathionate, rather than sulfate, which is a reflection of the differences in sulfur-cycling chemistry in ancient versus modern times. Collectively, such patterns strongly suggest that microbial diversity and sulfur-cycling processes in a preoxygenated earth were drastically different from the currently observed patterns and that the Great Oxygenation Event has precipitated the near extinction of a wide range of oxygen-sensitive lineages and significantly altered the microbial reductive sulfur-cycling community on earth. 
    more » « less
  2. Abstract

    Organic sulfur plays a crucial role in the biogeochemistry of aquatic sediments, especially in low sulfate (< 500 μM) environments like freshwater lakes and the Earth's early oceans. To better understand organic sulfur cycling in these systems, we followed organic sulfur in the sulfate‐poor (< 40 μM) iron‐rich (30–80 μM) sediments of Lake Superior from source to sink. We identified microbial populations with shotgun metagenomic sequencing and characterized geochemical species in porewater and solid phases. In anoxic sediments, we found an active sulfur cycle fueled primarily by oxidized organic sulfur. Sediment incubations indicated a microbial capacity to hydrolyze sulfonates, sulfate esters, and sulfonic acids to sulfate. Gene abundances for dissimilatory sulfate reduction (dsrAB) increased with depth and coincided with sulfide maxima. Despite these indicators of sulfide formation, sulfide concentrations remain low (< 40 nM) due to both pyritization and organic matter sulfurization. Immediately below the oxycline, pyrite accounted for 13% of total sedimentary sulfur. Both free and intact lipids in this same interval accumulated disulfides, indicating rapid sulfurization even at low concentrations of sulfide. Our investigation revealed a new model of sulfur cycling in a low‐sulfate environment that likely extends to other modern lakes and possibly the ancient ocean, with organic sulfur both fueling sulfate reduction and consuming the resultant sulfide.

     
    more » « less
  3. Abstract

    Constraints on Precambrian ocean chemistry are dependent upon sediment geochemistry. However, diagenesis and metamorphism can destroy primary biosignatures, making it difficult to consider biology when interpreting geochemical data. Modern analogues for ancient ecosystems can be useful tools for identifying how sediment geochemistry records an active biosphere. The Middle Island Sinkhole (MIS) in Lake Huron is an analogue for shallow Proterozoic waters due to its low oxygen water chemistry and microbial communities that exhibit diverse metabolic functions at the sediment–water interface. This study uses sediment trace metal contents and microbial abundances in MIS sediments and an oxygenated Lake Huron control site (LH) to infer mechanisms for trace metal burial. The adsorption of trace metals to Mn‐oxyhydroxides is a critical burial pathway for metals in oxic LH sediments, but not for the MIS mat and sediments, consistent with conventional understanding of Mn cycling. Micronutrient trace metals (e.g., Zn) are associated with organic matter regardless of oxygen and sulfide availability. Although U and V are conventionally considered to be organically complexed in suboxic and anoxic conditions, U and organic covary in oxic LH sediments, and Mn‐oxyhydroxide cycling dominates V deposition in the anoxic MIS sediments. Significant correlations between Mo and organic matter across all redox regimes have major implications for our interpretations of Mo isotope systematics in the geologic record. Finally, while microbial groups vary between the sampling locales (e.g., the cyanobacteria in the MIS microbial mat are not present in LH sediments), LH and MIS ultimately have similar relationships between microbial assemblages and metal burial, making it difficult to link trace metal burial to microbial metabolisms. Together, these results indicate that bulk sediment trace metal composition does not capture microbiological processes; more robust trace metal geochemistry such as isotopes and speciation may be critical for understanding the intersections between microbiology and sediment geochemistry.

     
    more » « less
  4. Abstract

    Biogeochemical sulfur cycling in sulfidic karst systems is largely driven by abiotic and biological sulfide oxidation, but the fate of elemental sulfur (S0) that accumulates in these systems is not well understood. The Frasassi Cave system (Italy) is intersected by a sulfidic aquifer that mixes with small quantities of oxygen‐rich meteoric water, creating Proterozoic‐like conditions and supporting a prolific ecosystem driven by sulfur‐based chemolithoautotrophy. To better understand the cycling of S0in this environment, we examined the geochemistry and microbiology of sediments underlying widespread sulfide‐oxidizing mats dominated byBeggiatoa. Sediment populations were dominated by uncultivated relatives of sulfur cycling chemolithoautotrophs related toSulfurovum,Halothiobacillus,Thiofaba,Thiovirga,Thiobacillus, andDesulfocapsa, as well as diverse uncultivated anaerobic heterotrophs affiliated withBacteroidota, Anaerolineaceae, Lentimicrobiaceae, and Prolixibacteraceae.DesulfocapsaandSulfurovumpopulations accounted for 12%–26% of sediment 16S rRNA amplicon sequences and were closely related to isolates which carry out autotrophic S0disproportionation in pure culture. Gibbs energy (∆Gr) calculations revealed that S0disproportionation under in situ conditions is energy yielding. Microsensor profiles through the mat‐sediment interface showed thatBeggiatoamats consume dissolved sulfide and oxygen, but a net increase in acidity was only observed in the sediments below. Together, these findings suggest that disproportionation is an important sink for S0generated by microbial sulfide oxidation in this oxygen‐limited system and may contribute to the weathering of carbonate rocks and sediments in sulfur‐rich environments.

     
    more » « less
  5. Abstract

    Deep‐sea methane seeps are amongst the most biologically productive environments on Earth and are often characterised by stable, low oxygen concentrations and microbial communities that couple the anaerobic oxidation of methane to sulfate reduction or iron reduction in the underlying sediment. At these sites, ferrous iron (Fe2+) can be produced by organoclastic iron reduction, methanotrophic‐coupled iron reduction, or through the abiotic reduction by sulfide produced by the abundant sulfate‐reducing bacteria at these sites. The prevalence of Fe2+in the anoxic sediments, as well as the availability of oxygen in the overlying water, suggests that seeps could also harbour communities of iron‐oxidising microbes. However, it is unclear to what extent Fe2+remains bioavailable and in solution given that the abiotic reaction between sulfide and ferrous iron is often assumed to scavenge all ferrous iron as insoluble iron sulfides and pyrite. Accordingly, we searched the sea floor at methane seeps along the Cascadia Margin for microaerobic, neutrophilic iron‐oxidising bacteria, operating under the reasoning that if iron‐oxidising bacteria could be isolated from these environments, it could indicate that porewater Fe2+can persist is long enough for biology to outcompete pyritisation. We found that the presence of sulfate in our enrichment media muted any obvious microbially‐driven iron oxidation with most iron being precipitated as iron sulfides. Transfer of enrichment cultures to sulfate‐depleted media led to dynamic iron redox cycling relative to abiotic controls and sulfate‐containing cultures, and demonstrated the capacity for biogenic iron (oxyhydr)oxides from a methane seep‐derived community. 16S rRNA analyses revealed that removing sulfate drastically reduced the diversity of enrichment cultures and caused a general shift from a Gammaproteobacteria‐domainated ecosystem to one dominated byRhodobacteraceae(Alphaproteobacteria). Our data suggest that, in most cases, sulfur cycling may restrict the biological “ferrous wheel” in contemporary environments through a combination of the sulfur‐adapted sediment‐dwelling ecosystems and the abiotic reactions they influence.

     
    more » « less