Information fusion is a procedure that merges information locally contained at the nodes of a network. Of high interest in the field of distributed estimation is the fusion of local probability distributions via a weighted geometrical average criterion. In numerous practical settings, the local distributions are only known through particle approximations, i.e., sets of samples with associated weights, such as obtained via importance sampling (IS) methods. Thus, prohibiting any closed-form solution to the aforementioned fusion problem. This article proposes a family of IS methods—called particle geometric–average fusion (PGAF)—that lead to consistent estimators for the geometrically-averaged density. The advantages of the proposed methods are threefold. First, the methods are agnostic of the mechanisms used to generate the local particle sets and, therefore, allow for the fusion of heterogeneous nodes. Second, consistency of estimators is guaranteed under generic conditions when the agents use IS-generated particles. Third, a low-communication overhead and agent privacy are achieved since local observations are not shared with the fusion center. Even more remarkably, for a sub-family of the proposed PGAF methods, the fusion center does not require the knowledge of the local priors used by the nodes. Implementation guidelines for the proposed methods are provided and theoretical results are numerically verified.
more »
« less
Decentralized random-field estimation for sensor networks using quantized spatially correlated data and fusion-center feedback
In large-scale wireless sensor networks, sensor-processor elements (nodes) are densely deployed to monitor the environment; consequently, their observations form a random field that is highly correlated in space.We consider a fusion sensor-network architecture where, due to the bandwidth and energy constraints, the nodes transmit quantized data to a fusion center. The fusion center provides feedback by broadcasting summary information to the nodes. In addition to saving energy, this feedback ensures reliability and robustness to node and fusion-center failures. We assume that the sensor observations follow a linear-regression model with known spatial covariances between any two locations within a region of interest. We propose a Bayesian framework for adaptive quantization, fusion-center feedback, and estimation of the random field and its parameters. We also derive a simple suboptimal scheme for estimating the unknown parameters, apply our estimation approach to the no-feedback scenario, discuss field prediction at arbitrary locations within the region of interest, and present numerical examples demonstrating the performance of the proposed methods.
more »
« less
- Award ID(s):
- 0545571
- PAR ID:
- 10013060
- Date Published:
- Journal Name:
- IEEE transactions on signal processing
- Volume:
- 56
- Issue:
- 12
- ISSN:
- 1053-587X
- Page Range / eLocation ID:
- 6069-6085
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract (WSN) using encrypted non-binary quantized data is studied. In a WSN, sensors transmit their observations to a fusion center through a wireless medium where the observations are susceptible to unauthorized eavesdropping. Encryption approaches for WSNs with fixed threshold binary quantization were previously explored. However, fixed threshold binary quantization limits parameter estimation to scalar parameters. In this paper, we propose a stochastic encryption approach for WSNs that can operate on non-binary quantized observations and has the capability for vector parameter estimation. We extend a binary stochastic encryption approach proposed previously, to a nonbinary generalized case. Sensor outputs are quantized using a quantizer with R + 1 levels, where R in {1.2. 3 ...}, encrypted by flipping them with certain flipping probabilities, and then transmitted. Optimal estimators using maximum-likelihood estimation are derived for both a legitimate fusion center (LFC) and a third party fusion center (TPFC) perspectives. We assume the TPFC is unaware of the encryption. Asymptotic analysis of the estimators is performed by deriving the Cramer-Rao lower bound for LFC estimation, and the asymptotic bias and variance for TPFC estimation. Numerical results validating the asymptotic analysis are presented.more » « less
-
We consider a dynamic sensor fusion problem where a large number of remote sensors observe a common Gauss-Markov process and the observations are transmitted to a fusion center over a resource constrained communication network. The design objective is to allocate an appropriate data rate to each sensor in such a way that the total data traffic to the fusion center is minimized, subject to a constraint on the fusion center's state estimation error covariance. We show that the problem can be formulated as a difference-of-convex program, to which we apply the convex-concave procedure (CCP) and the alternating direction method of multiplier (ADMM). Through a numerical study on a truss bridge sensing system, we observe that our algorithm tends to allocate zero data rate to unneeded sensors, implying that the proposed method is an effective heuristic for sensor selection.more » « less
-
null (Ed.)Quickest change detection in a sensor network is considered where each sensor observes a sequence of random variables and transmits its local information on the observations to a fusion center. At an unknown point in time, the distribution of the observations at all sensors changes. The objective is to detect the change in distribution as soon as possible, subject to a false alarm constraint. We consider minimax formulations for this problem and propose a new approach where transmissions are ordered and halted when sufficient information is accumulated at the fusion center. We show that the proposed approach can achieve the optimal performance equivalent to the centralized cumulative sum (CUSUM) algorithm while requiring fewer sensor transmissions. Numerical results for a shift in mean of independent and identically distributed Gaussian observations show significant communication savings for the case where the change seldom occurs which is frequently true in many important applications.more » « less
-
In Internet of Things (IoT) applications requiring parameter estimation, sensors often transmit quantized observations to a fusion center through a wireless medium where the observations are susceptible to unauthorized eavesdropping. The fusion center uses the received data to estimate desired parameters. To provide security to such networks, some low complexity encryption approaches have been proposed. In this paper, we generalize those approaches and present an analysis of their estimation and secrecy capabilities. We show that the dimension of the unknown parameter that can be efficiently estimated using an unbiased estimator when using these approaches, is upper bounded. Assuming that an unauthorized eavesdropper is aware of the low complexity encryption process but is unaware of the encryption key, we show successful eavesdropping, even with a large number of observations, is impossible with unbiased estimators and independent observations for these approaches. Numerical results validating our analysis are presented.more » « less