skip to main content


Title: High-resolution laser spectroscopy on bound–bound transitions in La −
NSF-PAR ID:
10014591
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Physica Scripta
Volume:
90
Issue:
5
ISSN:
0031-8949
Page Range / eLocation ID:
Article No. 054014
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Knowledge of highly excited rovibrational states of ozone isotopologues is of key importance for modelling the dynamics of exchange reactions, for understanding longstanding problems related to isotopic anomalies of the ozone formation, and for analyses of extra-sensitive laser spectral experiments currently in progress. This work is devoted to new theoretical study of high-energy states for the main isotopologue 48 O 3 = 16 O 16 O 16 O and for the family of 18 O-enriched isotopomers 50 O 3 = { 16 O 16 O 18 O, 16 O 18 O 16 O, 18 O 16 O 16 O} of the ozone molecule considered using a full-symmetry approach. Energies and wave functions of bound states near the dissociation threshold are computed in hyperspherical coordinates accounting for the permutation symmetry of three identical nuclei in 48 O 3 and of two identical nuclei in 50 O 3 , using the most accurate potential energy surface available now. The obtained vibrational band centers agree with observed ones with the root-mean-squares deviation of about 1 cm −1 , making the results appropriate for assignments and analyses of future experimental spectra. The levels delocalized between the three potential wells of ozone isomers are computed and analyzed. The states situated deep in the three (for 48 O 3 ) or two (for 50 O 3 ) equivalent potential wells have similar energies with negligible splitting. However, the states situated just below the potential barriers separating the wells, are split due to the tunneling between the wells resulting in the splitting of rovibrational sub-bands. We evaluate the amplitudes of the corresponding effects and consider possible perturbations in vibration–rotation bands due to interactions between three potential wells. Theoretical predictions for the splitting of observable band centers are provided for the first time. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)