skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Conduction electron spin resonance in the α -Yb 1−x Fe x AlB 4 (0 ⩽ x ⩽ 0.50) and α -LuAlB 4 compounds
PAR ID:
10014849
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics: Condensed Matter
Volume:
27
Issue:
25
ISSN:
0953-8984
Page Range / eLocation ID:
Article No. 255601
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Plating battery electrodes typically deliver higher specific capacity values than insertion or conversion electrodes because the ion charge carriers represent the sole electrode active mass, and a host electrode is unnecessary. However, reversible plating electrodes are rare for electronically insulating nonmetals. Now, a highly reversible iodine plating cathode is presented that operates on the redox couples of I2/[ZnIx(OH2)4−x]2−xin a water‐in‐salt electrolyte. The iodine plating cathode with the theoretical capacity of 211 mAh g−1plates on carbon fiber paper as the current collector, delivering a large areal capacity of 4 mAh cm−2. Tunable femtosecond stimulated Raman spectroscopy coupled with DFT calculations elucidate a series of [ZnIx(OH2)4−x]2−xsuperhalide ions serving as iodide vehicles in the electrolyte, which eliminates most free iodide ions, thus preventing the consequent dissolution of the cathode‐plated iodine as triiodides.

     
    more » « less
  2. Abstract

    Plating battery electrodes typically deliver higher specific capacity values than insertion or conversion electrodes because the ion charge carriers represent the sole electrode active mass, and a host electrode is unnecessary. However, reversible plating electrodes are rare for electronically insulating nonmetals. Now, a highly reversible iodine plating cathode is presented that operates on the redox couples of I2/[ZnIx(OH2)4−x]2−xin a water‐in‐salt electrolyte. The iodine plating cathode with the theoretical capacity of 211 mAh g−1plates on carbon fiber paper as the current collector, delivering a large areal capacity of 4 mAh cm−2. Tunable femtosecond stimulated Raman spectroscopy coupled with DFT calculations elucidate a series of [ZnIx(OH2)4−x]2−xsuperhalide ions serving as iodide vehicles in the electrolyte, which eliminates most free iodide ions, thus preventing the consequent dissolution of the cathode‐plated iodine as triiodides.

     
    more » « less