skip to main content


Title: Disruption of lipid homeostasis in the Gram-negative cell envelope activates a novel cell death pathway
NSF-PAR ID:
10015120
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
113
Issue:
11
ISSN:
0027-8424
Page Range / eLocation ID:
E1565 to E1574
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Intermediate cell states (ICSs) during the epithelial–mesenchymal transition (EMT) are emerging as a driving force of cancer invasion and metastasis. ICSs typically exhibit hybrid epithelial/mesenchymal characteristics as well as cancer stem cell (CSC) traits including proliferation and drug resistance. Here, we analyze several single-cell RNA-seq (scRNA-seq) datasets to investigate the relation between several axes of cancer progression including EMT, CSC traits, and cell–cell signaling. To accomplish this task, we integrate computational methods for clustering and trajectory inference with analysis of EMT gene signatures, CSC markers, and cell–cell signaling pathways, and highlight conserved and specific processes across the datasets. Our analysis reveals that “standard” measures of pluripotency often used in developmental contexts do not necessarily correlate with EMT progression and expression of CSC-related markers. Conversely, an EMT circuit energy that quantifies the co-expression of epithelial and mesenchymal genes consistently increases along EMT trajectories across different cancer types and anatomical locations. Moreover, despite the high context specificity of signal transduction across different cell types, cells undergoing EMT always increased their potential to send and receive signals from other cells. 
    more » « less