skip to main content

Title: Nickel-zinc ferrite/permalloy (Ni 0.5 Zn 0.5 Fe 2 O 4 /Ni-Fe) soft magnetic nanocomposites fabricated by electro-infiltration
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
AIP Advances
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Water electrolysis can use renewable electricity to produce green hydrogen, a portable fuel and sustainable chemical precursor. Improving electrolyzer efficiency hinges on the activity of the oxygen evolution reaction (OER) catalyst. Earth-abundant, ABO3-type perovskite oxides offer great compositional, structural, and electronic tunability, with previous studies showing compositional substitution can increase the OER activity drastically. However, the relationship between the tailored bulk composition and that of the surface, where OER occurs, remains unclear. Here, we study the effects of electrochemical cycling on the OER activity of La 0.5 Sr 0.5 Ni 1-x Fe x O 3-δ (x = 0-0.5) epitaxial films grown by oxide molecular beam epitaxy as a model Sr-containing perovskite oxide. Electrochemical testing and surface-sensitive spectroscopic analyses show Ni segregation, which is affected by electrochemical history, along with surface amorphization, coupled with changes in OER activity. Our findings highlight the importance of surface composition and electrochemical cycling conditions in understanding OER performance on mixed metal oxide catalysts, suggesting common motifs of the active surface with high surface area systems. 
    more » « less
  2. Abstract

    Phase‐pure [NiO]0.5[Al2O3]0.5spinel nanoparticles (NPs) with limited aggregation were obtained via liquid‐feed flame spray pyrolysis (LF‐FSP) by combusting metalloorganic precursor solutions. Thereafter “chocolate chip‐like” Nix[NiO0.5‐x][Al2O3]0.5nanoparticles consisting of primary [NiO0.5‐x][Al2O3]0.5particles with average particle sizes of 40‐60 nm decorated with Ni metal particles (<10 nm in diameter) dispersed on the surface were synthesized by heat treating the spinel NPs at 800°C/7 h in flowing 5% H2:N2100 mL/min in a fluidized bed reactor. The synthesized materials were characterized using TEM, XRD, FTIR, and TGA/DTA. The Ni depleted areas consist primarily of γ‐Al2O3. The Ni content (800°C) was determined by TGA to be ≈11.3 wt.% based on TGA oxidation behavior. The successful synthesis of such nanocomposites with limited aggregation on a high temperature support provides a facile route to synthesize well‐defined NP catalysts. This work serves as a baseline study for an accompanying paper, wherein thin, flexible, dense films made from these same NPs are used as regenerable catalysts for carbon nanotube syntheses.

    more » « less
  3. Abstract A new optical delivery system has been developed for the (scanning) transmission electron microscope. Here we describe the in situ and “rapid ex situ ” photothermal heating modality of the system, which delivers >200 mW of optical power from a fiber-coupled laser diode to a 3.7 μ m radius spot on the sample. Selected thermal pathways can be accessed via judicious choices of the laser power, pulse width, number of pulses, and radial position. The long optical working distance mitigates any charging artifacts and tremendous thermal stability is observed in both pulsed and continuous wave conditions, notably, no drift correction is applied in any experiment. To demonstrate the optical delivery system’s capability, we explore the recrystallization, grain growth, phase separation, and solid state dewetting of a Ag 0.5 Ni 0.5 film. Finally, we demonstrate that the structural and chemical aspects of the resulting dewetted films was assessed. 
    more » « less