skip to main content


Title: Large-scale species delimitation method for hyperdiverse groups: LARGE-SCALE SPECIES DELIMITATION
Award ID(s):
0940108
NSF-PAR ID:
10015260
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Molecular Ecology
Volume:
21
Issue:
11
ISSN:
0962-1083
Page Range / eLocation ID:
2671 to 2691
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Camacho, Gabriela P (Ed.)
    Abstract The ant genus Nylanderia Emery has a cosmopolitan distribution and includes 150 extant described species and subspecies, with potentially hundreds more undescribed. Global taxonomic revision has long been stalled by strong intra- and interspecific morphological variation, limited numbers of diagnostic characters, and dependence on infrequently collected male specimens for species description and identification. Taxonomy is further complicated by Nylanderia being one of the most frequently intercepted ant genera at ports of entry worldwide, and at least 15 globetrotting species have widespread and expanding ranges, making species-level diagnoses difficult. Three species complexes (‘bourbonica complex’, ‘fulva complex’, and ‘guatemalensis complex’) include globetrotting species. To elucidate the phylogenetic positions of these three complexes and delimit species boundaries within each, we used target enrichment of ultraconserved elements (UCEs) from 165 specimens representing 98 Nylanderia morphospecies worldwide. We also phased the UCEs, effectively doubling sample size and increasing population-level sampling. After recovering strong support for the monophyly of each complex, we extracted COI barcodes and SNPs from the UCE data and tested within-complex morphospecies hypotheses using three molecular delimitation methods (SODA, bPTP, and STACEY). This comparison revealed that most methods tended to over-split taxa, but results from STACEY were most consistent with our morphospecies hypotheses. Using these results, we recommend species boundaries that are conservative and most congruent across all methods. This work emphasizes the importance of integrative taxonomy for invasive species management, as globetrotting occurs independently across at least nine different lineages across Nylanderia. 
    more » « less
  2. Abstract Aim

    The “sexy shrimp”Thor amboinensisis currently considered a single circumtropical species. However, the tropical oceans are partitioned by hard and soft barriers to dispersal, providing ample opportunity for allopatric speciation. Herein, we test the null hypothesis thatT. amboinensisis a single global species, reconstruct its global biogeographical history, and comment on population‐level patterns throughout the Tropical Western Atlantic.

    Location

    Coral reefs in all tropical oceans.

    Methods

    Specimens ofThor amboinensiswere obtained through field collection and museum holdings. We used one mitochondrial (COI) and two nuclear (NaK, enolase) gene fragments for global species delimitation and phylogenetic analyses (n = 83 individuals, 30 sample localities), while phylogeographical reconstruction in theTWAwas based onCOIonly (n = 303 individuals, 10 sample localities).

    Results

    We found evidence for at least five cryptic lineages (9%–22%COIpairwise sequence divergence): four in the Indo‐West Pacific and one in the Tropical Western Atlantic. Phylogenetic reconstruction revealed that endemic lineages from Japan and the South Central Pacific are more closely related to the Tropical Western Atlantic lineage than to a co‐occurring lineage that is widespread throughout the Indo‐West Pacific. Concatenated and species tree phylogenetic analyses differ in the placement of an endemic Red Sea lineage and suggest alternate dispersal pathways into the Atlantic. Phylogeographical reconstruction throughout the Tropical Western Atlantic reveals little genetic structure over more than 3,000 km.

    Main conclusions

    Thor amboinensisis a species complex that has undergone a series of allopatric speciation events and whose members are in secondary contact in the Indo‐West Pacific. Nuclear‐ and mitochondrial‐ gene phylogenies show evidence of introgression between lineages inferred to have been separated more than 20 Ma. Phylogenetic discordance between multi‐locus analyses suggest thatT. amboinensisoriginated in the Tethys sea and dispersed into the Atlantic and Indo‐West Pacific through the Tethys seaway or, alternatively, originated in the Indo‐West Pacific and dispersed into the Atlantic around South Africa. Population‐level patterns in the Caribbean indicate extensive gene flow across the region.

     
    more » « less
  3. Abstract

    The biota of Sulawesi is noted for its high degree of endemism and for its substantial levels of in situ biological diversification. While the island’s long period of isolation and dynamic tectonic history have been implicated as drivers of the regional diversification, this has rarely been tested in the context of an explicit geological framework. Here, we provide a tectonically informed biogeographical framework that we use to explore the diversification history of Sulawesi flying lizards (the Draco lineatus Group), a radiation that is endemic to Sulawesi and its surrounding islands. We employ a framework for inferring cryptic speciation that involves phylogeographic and genetic clustering analyses as a means of identifying potential species followed by population demographic assessment of divergence-timing and rates of bi-directional migration as means of confirming lineage independence (and thus species status). Using this approach, phylogenetic and population genetic analyses of mitochondrial sequence data obtained for 613 samples, a 50-SNP data set for 370 samples, and a 1249-locus exon-capture data set for 106 samples indicate that the current taxonomy substantially understates the true number of Sulawesi Draco species, that both cryptic and arrested speciations have taken place, and that ancient hybridization confounds phylogenetic analyses that do not explicitly account for reticulation. The Draco lineatus Group appears to comprise 15 species—9 on Sulawesi proper and 6 on peripheral islands. The common ancestor of this group colonized Sulawesi ~11 Ma when proto-Sulawesi was likely composed of two ancestral islands, and began to radiate ~6 Ma as new islands formed and were colonized via overwater dispersal. The enlargement and amalgamation of many of these proto-islands into modern Sulawesi, especially during the past 3 Ma, set in motion dynamic species interactions as once-isolated lineages came into secondary contact, some of which resulted in lineage merger, and others surviving to the present. [Genomics; Indonesia; introgression; mitochondria; phylogenetics; phylogeography; population genetics; reptiles.]

     
    more » « less