Understanding habitat use by animals requires understanding the simultaneous tradeoffs between food and predation risk within a landscape. Quantifying the synergy between patches that provide quality food and those that are safe from predators at a scale relevant to a foraging animal could better reveal the parameters that influence habitat selection. To understand more thoroughly how animals select habitat components, we investigated tradeoffs between diet quality and predation risk in a species endemic to sagebrush
Small herbivores face risks of predation while foraging and are often forced to trade off food quality for safety. Life history, behaviour, and habitat of predator and prey can influence these trade‐offs. We compared how two sympatric rabbits (pygmy rabbit,
- PAR ID:
- 10015656
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology and Evolution
- Volume:
- 6
- Issue:
- 9
- ISSN:
- 2045-7758
- Format(s):
- Medium: X Size: p. 2865-2876
- Size(s):
- p. 2865-2876
- Sponsoring Org:
- National Science Foundation
More Like this
-
Artemisia spp. communities in North America, the pygmy rabbitBrachylagus idahoensis. This species is a rare example of a specialist herbivore that relies almost entirely on sagebrush for food and cover. We hypothesized that pygmy rabbits would forage in areas with low food risk (free of plant secondary metabolites, PSMs) and low predation risk (high concealment). However, because of relatively high tolerance to PSMs in sagebrush by pygmy rabbits, we hypothesized that they would trade off the risk of PSM‐containing food to select lower predation risk when risks co‐occurred. We compared food intake of pygmy rabbits during three double‐choice trials designed to examine tradeoffs by offering animals two levels of food risk (1,8‐cineole, a PSM) and predation risk (concealment cover). Rabbits ate more food at feeding stations with PSM‐free food and high concealment cover. However, interactions between PSMs and cover suggested that the value of PSM‐free food could be reduced if concealment is low and the value of high concealment can decrease if food contains PSMs. Furthermore, foraging decisions by individual rabbits suggested variation in tolerance of food or predation risks. -
Abstract How intensely animals use habitat features depends on their functional properties (i.e., how the feature influences fitness) and the spatial and temporal scale considered. For herbivores, habitat use is expected to reflect the competing risks of starvation, predation, and thermal stress, but the relative influence of each functional property is expected to vary in space and time. We examined how a dietary and habitat specialist, the pygmy rabbit (
Brachylagus idahoensis ), used these functional properties of its sagebrush habitat—food quality, security, and thermal refuge—at two hierarchical spatial scales (microsite and patch) across two seasons (winter and summer). At the microsite and patch scales, we determined which plant functional traits predicted the number of bites (i.e., foraging) by pygmy rabbits and the number of their fecal pellets (i.e., general habitat use). Pygmy rabbits used microsites and patches more intensely that had higher crude protein and aerial concealment cover and were closer to burrows. Food quality was more influential when rabbits used microsites within patches. Security was more influential in winter than summer, and more at Cedar Gulch than Camas. However, the influence of functional properties depended on phytochemical and structural properties of sagebrush and was not spatiotemporally consistent. These results show function‐dependent habitat use that varied according to specific activities by a central‐place browsing herbivore. Making spatially explicit predictions of the relative value of habitat features that influence different types of habitat use (i.e., foraging, hiding, and thermoregulating) will improve how we predict patterns of habitat use by herbivores and how we monitor and manage functional traits within habitats for wildlife. -
Carraway, Leslie (Ed.)Abstract Sagebrush-steppe ecosystems are one of the most imperiled ecosystems in North America and many of the species that rely on these habitats are of great conservation concern. Pygmy rabbits (Brachylagus idahoensis) are one of these species. They rely on sagebrush year-round for food and cover, and are understudied across their range in the intermountain west due in part to their recalcitrance to standard capture techniques. Identifying an efficient and minimally biased trapping method therefore is a critical first step in learning more about this species. We assessed how trap orientation and weather characteristics influenced trap success for Tomahawk traps placed in and around pygmy rabbit burrows by carrying out trapping surveys at 16 occupied pygmy rabbit sites across the Great Basin from 2016 to 2018. We found that pygmy rabbits had a greater probability of being captured in traps with the open end facing away from burrow entrances. Pygmy rabbits also were more likely to be captured on clear days (0–5% cloud cover) and during periods of cooler temperatures during summer months (June–August). We found no evidence that sex or age ratios differed, or that individuals differed meaningfully, in their preference for certain trap orientations. To increase trap success for pygmy rabbits, we suggest maximizing trapping effort during summer months, at dawn, and maximizing the proportion of Tomahawk traps facing away from burrow entrances. We anticipate that our monitoring protocol will enable more effective research into the ecology and conservation of this cryptic and potentially imperiled species.more » « less
-
Abstract Questions Shrub expansion into alpine ecosystems worldwide raises important questions regarding the influence of shrub encroachment on alpine species diversity. The stress gradient hypothesis (
SGH ) predicts interactions will be competitive when resources are plentiful and the environment is benign, but that facilitative interactions will dominate when conditions are stressful. We asked howArtemisia rothrockii (sagebrush) encroachment in an arid mountain range is affecting alpine plant species there and how the plant community responds to the experimental removal of sagebrush at three sites along an elevational gradient.Location The White Mountains, California,
USA (37°30′N, 118°10′W).Methods A shrub removal experiment was established at three elevations (2,900, 3,100 and 3,750 m) to evaluate how sagebrush interacts with alpine and sub‐alpine plant communities.
Results The study sites experienced a strong drought over the 4 yrs of the experiment and plant cover declined overall. However, in the sagebrush removal treatment, cover of co‐occurring species increased at both the high‐elevation and low‐elevation sites, with no differences observed at the mid‐elevation site.
Conclusions We observed the greatest inhibitory effects of sagebrush at high and low elevations, where plants experience the largest temperature and moisture stress, respectively, and no evidence of facilitation anywhere along the elevational gradient. These results demonstrate that while sagebrush has important influences on herbaceous species composition in the White Mountains, they are inconsistent with the classic predictions of the
SGH . -
Abstract Aims Bryophytes can cover three quarters of the ground surface, play key ecological functions, and increase biodiversity in mesic high‐elevation conifer forests of the temperate zone. Forest gaps affect species coexistence (and ecosystem functions) as suggested by the gap and gap‐size partitioning hypotheses (
GPH ,GSPH ). Here we test these hypotheses in the context of high‐elevation forest bryophyte communities and their functional attributes.Study Site Spruce–fir forests on Whiteface Mountain, NY,
USA .Methods We characterized canopy openness, microclimate, forest floor substrates, vascular vegetation cover, and moss layer (cover, common species, and functional attributes) in three canopy openness environments (gap, gap edge, forest canopy) across 20 gaps (fir waves) (
n = 60); the functional attributes were based on 16 morphologic, reproductive, and ecological bryophyte plant functional traits (PFT s). We testedGPH andGSPH relative to bryophyte community metrics (cover, composition), traits, and trait functional sensitivity (functional dispersion;FDis ) using indicator species analysis, ordination, and regression.Results Canopy openness drove gradients in ground‐level temperature, substrate abundance and heterogeneity (beta diversity), and understory vascular vegetation cover. The
GPH was consistent with (a) the abundance patterns of forest canopy indicator species (Dicranum fuscescens ,Hypnum imponens , andTetraphis pellucida ), and (b)FDis based on threePFT s (growth form, fertility, and acidity), both increasing with canopy cover. We did not find support forGPH in the remaining species or traits, or forGSPH in general; gap width (12–44 m) was not related to environmental or bryophyte community gradients.Conclusions The observed lack of variation in most bryophyte metrics across canopy environments suggests high resistance of the bryophyte layer to natural canopy gaps in high‐elevation forests. However, responses of forest canopy indicator species suggest that canopy mortality, potentially increased by changing climate or insect pests, may cause declines in some forest canopy species and consequently in the functional diversity of bryophyte communities.