skip to main content


Title: Global parameterization and validation of a two-leaf light use efficiency model for predicting gross primary production across FLUXNET sites: TL-LUE Parameterization and Validation
NSF-PAR ID:
10015905
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
121
Issue:
4
ISSN:
2169-8953
Page Range / eLocation ID:
1045 to 1072
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In fluid physics, data-driven models to enhance or accelerate time to solution are becoming increasingly popular for many application domains, such as alternatives to turbulence closures, system surrogates, or for new physics discovery. In the context of reduced order models of high-dimensional time-dependent fluid systems, machine learning methods grant the benefit of automated learning from data, but the burden of a model lies on its reduced-order representation of both the fluid state and physical dynamics. In this work, we build a physics-constrained, data-driven reduced order model for Navier–Stokes equations to approximate spatiotemporal fluid dynamics in the canonical case of isotropic turbulence in a triply periodic box. The model design choices mimic numerical and physical constraints by, for example, implicitly enforcing the incompressibility constraint and utilizing continuous neural ordinary differential equations for tracking the evolution of the governing differential equation. We demonstrate this technique on a three-dimensional, moderate Reynolds number turbulent fluid flow. In assessing the statistical quality and characteristics of the machine-learned model through rigorous diagnostic tests, we find that our model is capable of reconstructing the dynamics of the flow over large integral timescales, favoring accuracy at the larger length scales. More significantly, comprehensive diagnostics suggest that physically interpretable model parameters, corresponding to the representations of the fluid state and dynamics, have attributable and quantifiable impact on the quality of the model predictions and computational complexity.

     
    more » « less
  2. Abstract

    A new version of the stochastic multiplume Jet Propulsion Laboratory Eddy‐Diffusivity/Mass‐Flux (JPL‐EDMF) parameterization which consistently couples the simplified Khairoutdinov and Kogan (2000),https://doi.org/10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2, warm phase cloud microphysical parameterization with the parameterization of cloud macrophysical and subgrid scale dynamical processes is described. The new parameterization combines the EDMF approach with an assumed shape of a joint probability density function of thermodynamic and kinematic variables which provide the basis for the computation of all parameterized processes. As far as we are aware this is the first attempt to consistently couple all of these parameterized processes in the EDMF framework. This paper is part one of a two paper series. Here, the JPL‐EDMF parameterization is described and benchmark simulations of precipitating stratocumulus and cumulus convection are performed in a single‐column‐model framework. The parameterization results compare favorably to the reference large‐eddy‐simulation results. In the second part (Smalley et al., 2022,https://doi.org/10.1029/2021MS002729) the JPL‐EDMF parameterization is validated for a wide range of observation‐based scenarios covering the continuous transition from subtropical stratocumulus to cumulus convection derived from global reanalysis, and parameterization uncertainties are studied in detail.

     
    more » « less
  3. null (Ed.)
    Abstract It remains uncertain how the Southern Ocean circulation responds to changes in surface wind stress, and whether coarse-resolution simulations, where mesoscale eddy fluxes are parameterized, can adequately capture the response. We address this problem using two idealized model setups mimicking the Southern Ocean: a flat-bottom channel and a channel with moderately complex topography. Under each topographic configuration and varying wind stress, we compare several coarse-resolution simulations, configured with different eddy parameterizations, against an eddy-resolving simulation. We find that 1) without topography, sensitivity of the Antarctic Circumpolar Current (ACC) to wind stress is overestimated by coarse-resolution simulations, due to an underestimate of the sensitivity of the eddy diffusivity; 2) in the presence of topography, stationary eddies dominate over transient eddies in counteracting the direct response of the ACC and overturning circulation to wind stress changes; and 3) coarse-resolution simulations with parameterized eddies capture this counteracting effect reasonably well, largely due to their ability to resolve stationary eddies. Our results highlight the importance of topography in modulating the response of the Southern Ocean circulation to changes in surface wind stress. The interaction between mesoscale eddies and stationary meanders induced by topography requires more attention in future development and testing of eddy parameterizations. 
    more » « less