skip to main content


Title: Running dry: The U.S. Southwest's drift into a drier climate state: RUNNING DRY
NSF-PAR ID:
10016282
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
43
Issue:
3
ISSN:
0094-8276
Page Range / eLocation ID:
1272 to 1279
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Introduction

    Runners competing in races are looking to optimize their performance. In this paper, a runner's performance in a race, such as a marathon, is formulated as an optimal control problem where the controls are: the nutrition intake throughout the race and the propulsion force of the runner. As nutrition is an integral part of successfully running long distance races, it needs to be included in models of running strategies.

    Methods

    We formulate a system of ordinary differential equations to represent the velocity, fat energy, glycogen energy, and nutrition for a runner competing in a long-distance race. The energy compartments represent the energy sources available in the runner's body. We allocate the energy source from which the runner draws, based on how fast the runner is moving. The food consumed during the race is a source term for the nutrition differential equation. With our model, we are investigating strategies to manage the nutrition and propulsion force in order to minimize the running time in a fixed distance race. This requires the solution of a nontrivial singular control problem.

    Results

    As the goal of an optimal control model is to determine the optimal strategy, comparing our results against real data presents a challenge; however, in comparing our results to the world record for the marathon, our results differed by 0.4%, 31 seconds. Per each additional gel consumed, the runner is able to run 0.5 to 0.7 kilometers further in the same amount of time, resulting in a 7.75% increase in taking five 100 calorie gels vs no nutrition.

    Discussion

    Our results confirm the belief that the most effective way to run a race is to run approximately the same pace the entire race without letting one's energies hit zero, by consuming in-race nutrition. While this model does not take all factors into account, we consider it a building block for future models, considering our novel energy representation, and in-race nutrition.

     
    more » « less
  2. We provide faster algorithms for approximating the optimal transport distance, e.g. earth mover's distance, between two discrete probability distributions on n elements. We present two algorithms that compute couplings between marginal distributions with an expected transportation cost that is within an additive ϵ of optimal in time O(n^2/eps); one algorithm is straightforward to parallelize and implementable in depth O(1/eps). Further, we show that additional improvements on our results must be coupled with breakthroughs in algorithmic graph theory. 
    more » « less
  3. Recent work in the design of mechanical systems for terrestrial locomotion has indicated successful strategies for increasing the energetic performance of a robotic locomotor without upgrading its actuator system. We apply one such strategy, termed power modulation, in a new way: for the design of a leg mechanism useful for running. Power modulation geometrically defines force/torque ratios between robot components to mechanically achieve certain energy transmission characteristics during fast stance dynamics that increase the kinetic power output of the overall system. Furthermore, we investigate the design of a leg mechanism that can adjust to exhibit power modulation. In this way, a leg mechanism would exhibit a low power mode for flat terrain, and can adjust to a high power mode for rough terrain. The latter makes jumping possible and extends the range of available footholds that can be accessed in a single step. To find a suitable leg mechanism, we leverage the Finite Root Generation method to compute a design. The design is advanced to a prototype and basic experiments are conducted to investigate its behavior as adjusted between high-and low-power modes 
    more » « less