skip to main content


Title: Microsatellite loci discovery from next-generation sequencing data and loci characterization in the epizoic barnacle Chelonibia testudinaria (Linnaeus, 1758)

Microsatellite markers remain an important tool for ecological and evolutionary research, but are unavailable for many non-model organisms. One such organism with rare ecological and evolutionary features is the epizoic barnacleChelonibia testudinaria(Linnaeus, 1758).Chelonibia testudinariaappears to be a host generalist, and has an unusual sexual system, androdioecy. Genetic studies on host specificity and mating behavior are impeded by the lack of fine-scale, highly variable markers, such as microsatellite markers. In the present study, we discovered thousands of new microsatellite loci from next-generation sequencing data, and characterized 12 loci thoroughly. We conclude that 11 of these loci will be useful markers in future ecological and evolutionary studies onC. testudinaria.

 
more » « less
NSF-PAR ID:
10016616
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
PeerJ
Date Published:
Journal Name:
PeerJ
Volume:
4
ISSN:
2167-8359
Page Range / eLocation ID:
Article No. e2019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background

    Vestimentiferan tubeworms are some of the most recognizable fauna found at deep-sea cold seeps, isolated environments where hydrocarbon rich fluids fuel biological communities. Several studies have investigated tubeworm population structure; however, much is still unknown about larval dispersal patterns at Gulf of Mexico (GoM) seeps. As such, researchers have applied microsatellite markers as a measure for documenting the transport of vestimentiferan individuals. In the present study, we investigate the utility of microsatellites to be cross-amplified within the escarpiid clade of seep vestimentiferans, by determining if loci originally developed forEscarpiaspp. could be amplified in the GoM seep tubeworm,Seepiophila jonesi. Additionally, we determine if cross-amplified loci can reliably uncover the same signatures of high gene flow seen in a previous investigation ofS. jonesi.

    Methods

    Seventy-sevenS. jonesiindividuals were collected from eight seep sites across the upper Louisiana slope (<1,000 m) in the GoM. Forty-eight microsatellite loci that were originally developed forEscarpia laminata(18 loci) andEscarpia southwardae(30 loci) were tested to determine if they were homologous and polymorphic inS. jonesi. Loci found to be both polymorphic and of high quality were used to test for significant population structuring inS. jonesi.

    Results

    Microsatellite pre-screening identified 13 (27%) of theEscarpialoci were homologous and polymorphic inS. jonesi, revealing that microsatellites can be amplified within the escarpiid clade of vestimentiferans. Our findings uncovered low levels of heterozygosity and a lack of genetic differentiation amongstS. jonesifrom various sites and regions, in line with previous investigations that employed species-specific polymorphic loci onS. jonesiindividuals retrieved from both the same and different seep sites. The lack of genetic structure identified from these populations supports the presence of significant gene flow via larval dispersal in mixed oceanic currents.

    Discussion

    The ability to develop “universal” microsatellites reduces the costs associated with these analyses and allows researchers to track and investigate a wider array of taxa, which is particularly useful for organisms living at inaccessible locations such as the deep sea. Our study highlights that non-species specific microsatellites can be amplified across large evolutionary distances and still yield similar findings as species-specific loci. Further, these results show thatS. jonesicollected from various localities in the GoM represents a single panmictic population, suggesting that dispersal of lecithotrophic larvae by deep sea currents is sufficient to homogenize populations. These data are consistent with the high levels of gene flow seen inEscarpiaspp., which advocates that differences in microhabitats of seep localities lead to variation in biogeography of separate species.

     
    more » « less
  2. Abstract

    Understanding the consequences of exotic diseases on native forests is important to evolutionary ecology and conservation biology because exotic pathogens have drastically altered US eastern deciduous forests.Cornus floridaL. (flowering dogwood tree) is one such species facing heavy mortality. Characterizing the genetic structure ofC. floridapopulations and identifying the genetic signature of adaptation to dogwood anthracnose (an exotic pathogen responsible for high mortality) remain vital for conservation efforts. By integrating genetic data from genotype by sequencing (GBS) of 289 trees across the host species range and distribution of disease, we evaluated the spatial patterns of genetic variation and population genetic structure ofC. floridaand compared the pattern to the distribution of dogwood anthracnose. Using genome‐wide association study and gradient forest analysis, we identified genetic loci under selection and associated with ecological and diseased regions. The results revealed signals of weak genetic differentiation of three or more subgroups nested within two clusters—explaining up to 2%–6% of genetic variation. The groups largely corresponded to the regions within and outside the eastern Hot‐Continental ecoregion, which also overlapped with areas within and outside the main distribution of dogwood anthracnose. The fungal sequences contained in the GBS data of sampled trees bolstered visual records of disease at sampled locations and were congruent with the reported range ofDiscula destructiva, suggesting that fungal sequences within‐host genomic data were informative for detecting or predicting disease. The genetic diversity between populations at diseased vs. disease‐free sites across the range ofC. floridashowed no significant difference. We identified 72 single‐nucleotide polymorphisms (SNPs) from 68 loci putatively under selection, some of which exhibited abrupt turnover in allele frequencies along the borders of the Hot‐Continental ecoregion and the range of dogwood anthracnose. One such candidate SNP was independently identified in two prior studies as a possible L‐type lectin‐domain containing receptor kinase. Although diseased and disease‐free areas do not significantly differ in genetic diversity, overall there are slight trends to indicate marginally smaller amounts of genetic diversity in disease‐affected areas. Our results were congruent with previous studies that were based on a limited number of genetic markers in revealing high genetic variation and weak population structure inC. florida.

     
    more » « less
  3. Abstract

    Information on genetic relationships among individuals is essential to many studies of the behaviour and ecology of wild organisms. Parentage and relatedness assays based on large numbers of single nucleotide polymorphism (SNP) loci hold substantial advantages over the microsatellite markers traditionally used for these purposes. We present a double‐digest restriction site‐associated DNA sequencing (ddRAD‐seq) analysis pipeline that, as such, simultaneously achieves the SNP discovery and genotyping steps and which is optimized to return a statistically powerful set of SNP markers (typically 150–600 after stringent filtering) from large numbers of individuals (up to 240 per run). We explore the trade‐offs inherent in this approach through a set of experiments in a species with a complex social system, the variegated fairy‐wren (Malurus lamberti) and further validate it in a phylogenetically broad set of other bird species. Through direct comparisons with a parallel data set from a robust panel of highly variable microsatellite markers, we show that this ddRAD‐seq approach results in substantially improved power to discriminate among potential relatives and considerably more precise estimates of relatedness coefficients. The pipeline is designed to be universally applicable to all bird species (and with minor modifications to many other taxa), to be cost‐ and time‐efficient, and to be replicable across independent runs such that genotype data from different study periods can be combined and analysed as field samples are accumulated.

     
    more » « less
  4. SUMMARY

    Sorghum anthracnose caused by the fungusColletotrichum sublineola(Cs) is a damaging disease of the crop. Here, we describe the identification ofANTHRACNOSE RESISTANCE GENES(ARG4andARG5) encoding canonical nucleotide‐binding leucine‐rich repeat (NLR) receptors.ARG4andARG5are dominant resistance genes identified in the sorghum lines SAP135 and P9830, respectively, that show broad‐spectrum resistance toCs. Independent genetic studies using populations generated by crossing SAP135 and P9830 with TAM428, fine mapping using molecular markers, comparative genomics and gene expression studies determined thatARG4andARG5are resistance genes againstCsstrains. Interestingly,ARG4andARG5are both located within clusters of duplicate NLR genes at linked loci separated by ~1 Mb genomic region. SAP135 and P9830 each carry only one of theARGgenes while having the recessive allele at the second locus. Only two copies of theARG5candidate genes were present in the resistant P9830 line while five non‐functional copies were identified in the susceptible line. The resistant parents and their recombinant inbred lines carrying eitherARG4orARG5are resistant to strains Csgl1 and Csgrg suggesting that these genes have overlapping specificities. The role ofARG4andARG5in resistance was validated through sorghum lines carrying independent recessive alleles that show increased susceptibility.ARG4andARG5are located within complex loci displaying interesting haplotype structures and copy number variation that may have resulted from duplication. Overall, the identification of anthracnose resistance genes with unique haplotype stucture provides a foundation for genetic studies and resistance breeding.

     
    more » « less
  5. Abstract

    The blacklegged tick (Ixodes scapularis(Journal of the Academy of Natural Sciences of Philadelphia, 1821,2, 59)) is a vector ofBorrelia burgdorferisensu stricto (s.s.) (International Journal of Systematic Bacteriology, 1984,34, 496), the causative bacterial agent of Lyme disease, part of a slow‐moving epidemic of Lyme borreliosis spreading across the northern hemisphere. Well‐known geographical differences in the vectorial capacity of these ticks are associated with genetic variation. Despite the need for detailed genetic information in this disease system, previous phylogeographical studies of these ticks have been restricted to relatively few populations or few genetic loci. Here we present the most comprehensive phylogeographical study of genome‐wide markers inI. scapularis, conducted by using 3RAD (triple‐enzyme restriction‐site associated sequencing) and surveying 353 ticks from 33 counties throughout the species' range. We found limited genetic variation among populations from the Northeast and Upper Midwest, where Lyme disease is most common, and higher genetic variation among populations from the South. We identify five spatially associated genetic clusters ofI. scapularis. In regions where Lyme disease is increasing in frequency, theI. scapularispopulations genetically group with ticks from historically highly Lyme‐endemic regions. Finally, we identify 10 variable DNA sites that contribute the most to population differentiation. These variable sites cluster on one of the chromosome‐scale scaffolds forI. scapularisand are within identified genes. Our findings illuminate the need for additional research to identify loci causing variation in the vectorial capacity ofI. scapularisand where additional tick sampling would be most valuable to further understand disease trends caused by pathogens transmitted byI. scapularis.

     
    more » « less