skip to main content


Title: Output encoding for cochlear signal analysis
The biological inner ear, or cochlea, is an amazing sensor that performs auditory frequency analysis over an ultra-broadband frequency range of ~20 Hz to 20 kHz with exquisite sensitivity and high energy efficiency. Electronic cochlear models, which mimic the exponentially-tapered structure of the biological inner ear using transmission lines or filter cascades, have been shown to be fast and extremely efficient spectrum analyzers at both audio and radio frequencies (RF). Here we present improved output encoding methods for such cochlea-like analyzers. We have developed neuron-like asynchronous event-generation circuits to efficiently encode cochlear outputs, including ring-oscillator-based injection-locked frequency dividers (ILFDs) that accurately encode input frequencies and phase-sensitive detectors that encode both amplitude and phase information and thereby improve frequency resolution without reducing temporal resolution.  more » « less
Award ID(s):
1525162
NSF-PAR ID:
10016639
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Biomedical Circuits and Systems Conference (BioCAS), 2015 IEEE
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    According to the National Institute of Deafness and other Communication Disorders 2012 report, the number of cochlear implant (CI) users is steadily increasing from 324,000 CI users worldwide. The cochlea, located in the inner ear, is a snail-like structure that exhibits a tonotopic geometry where acoustic waves are filtered spatially according to frequency. Throughout the cochlea, there exist hair cells that transduce sensed acoustic waves into an electrical signal that is carried by the auditory nerve to ultimately reach the auditory cortex of the brain. A cochlear implant bridges the gap if non-functional hair cells are present. Conventional CIs directly inject an electrical current into surrounding tissue via an implanted electrode array and exploit the frequency-to-place mapping of the cochlea. However, the current is dispersed in perilymph, a conductive bodily fluid within the cochlea, causing a spread of excitation. Magnetic fields are more impervious to the effects of the cochlear environment due to the material properties of perilymph and surrounding tissue, demonstrating potential to improve precision. As an alternative to conventional CI electrodes, the development and miniaturization of microcoils intended for micromagnetic stimulation of intracochlear neural elements is described. As a step toward realizing a microcoil array sized for cochlear implantation, human-sized coils were prototyped via aerosol jet printing. The batch reproducible aerosol jet printed microcoils have a diameter of 1800 μm, trace width and trace spacing of 112.5 μm, 12 μm thickness, and inductance values of approximately 15.5 nH. Modelling results indicate that the coils have a combined depolarization–hyperpolarization region that spans 1.5 mm and produce a more restrictive spread of activation when compared with conventional CI. 
    more » « less
  2. Abstract

    We describe, in unprecedented detail, the petrosals and stapes of the docodontBorealestesfrom the Middle Jurassic of Scotland, using high resolution μCTand phase‐contrast synchrotron imaging. We describe the inner ear endocast and the vascularized interior structure of the petrosal, and provide the first endocranial view of a docodontan petrosal. Our study confirms some similarities in petrosal and stapedial morphology with the better knownHaldanodonof the Late Jurassic of Portugal, including: (1) the degree of curvature of the cochlea; (2) multiple features related to the highly pneumatized paroccipital region; (3) the shape of lateral trough, the fossa of the M. tensor tympani, and the ridge on the promontorium; (4) the round shape of the fenestra vestibuli; and (5) overall morphology of the stapes. ButBorealestesdiffers fromHaldanodonin having a bony ridge that separates the tympanic opening of the prootic canal, the secondary facial foramen and the hiatus Fallopii, from the fenestra vestibuli. We identify two new vascular structures: the anterior and posterior trans‐cochlear sinuses, which traverse the pars cochlearis around the cochlear nerve (VIII). These trans‐cochlear sinuses have not been observed in previous docodont specimens, and could be an autapomorphy ofBorealestes, or apomorphic for this clade. We also establish the anatomical relationship of the circum‐promontorium plexus to the inner endocast. The high quality of our scans has made these structures visible for the first time.

     
    more » « less
  3. Abstract

    Compared to many other rodent species, naked mole rats (Heterocephalus glaber) have elevated auditory thresholds, poor frequency selectivity, and limited ability to localize sound. Because the cochlea is responsible for encoding and relaying auditory signals to the brain, we used immunofluorescence and quantitative image analysis to examine cochlear innervation in mature and developing naked mole rats compared to mice (Mus musculus), gerbils (Meriones unguiculatus), and Damaraland mole rats (Fukomys damarensis), another subterranean rodent. In comparison to mice and gerbils, we observed alterations in afferent and efferent innervation as well as their patterns of developmental refinement in naked and Damaraland mole rats. These alterations were, however, not always shared similarly between naked and Damaraland mole rats. Most conspicuously, in both naked and Damaraland mole rats, inner hair cell (IHC) afferent ribbon density was reduced, whereas outer hair cell afferent ribbon density was increased. Naked and Damaraland mole rats also showed reduced lateral and medial efferent terminal density. Developmentally, naked mole rats showed reduced and prolonged postnatal reorganization of afferent and efferent innervation. Damaraland mole rats showed no evidence of postnatal reorganization. Differences in cochlear innervation specifically between the two subterranean rodents and more broadly among rodents provides insight into the cochlear mechanisms that enhance frequency sensitivity and sound localization, maturation of the auditory system, and the evolutionary adaptations occurring in response to subterranean environments.

     
    more » « less
  4. Abstract

    The mammalian cochlea is able to detect faint sounds due to the presence of an active nonlinear feedback mechanism that boosts cochlear vibrations of low amplitude. Because of this feedback, self-sustained oscillations called spontaneous otoacoustic emissions (SOAEs) can often be measured in the ear canal. Recent experiments in genetically modified mice have demonstrated that mutations of the genes expressed in the tectorial membrane (TM), an extracellular matrix located in the cochlea, can significantly enhance the generation of SOAEs. Multiple untested mechanisms have been proposed to explain these unexpected results. In this work, a physiologically motivated computational model of a mammalian species commonly studied in auditory research, the gerbil, is used to demonstrate that altering the viscoelastic properties of the TM tends to affect the linear stability of the cochlea, SOAE generation and the cochlear response to low amplitude stimuli. These results suggest that changes in TM properties might be the underlying cause for SOAE enhancement in some mutant mice. Furthermore, these theoretical findings imply that the TM contributes to keeping the mammalian cochlea near an oscillatory instability, which promotes high sensitivity and the detection of low level stimuli.

     
    more » « less
  5. Mimicking the nonlinear compressive behavior of the mammalian cochlear amplifier that results in the compression of high-intensity sounds and amplification of faint stimuli can lead to transformative improvements in the dynamic range, sharpness of the response, and threshold of sound detection in cochlear implants to aid individuals with hearing loss. Furthermore, it can enhance the dynamic properties of sensors. This research on developing self-sensing artificial hair cells (AHCs) validates the phenomenological control algorithm established in Part I of the paper to achieve a cochlea-like response from the quadmorph AHCs. As the beam is excited, the voltage of the piezoelectric layers is measured and used to generate a control voltage. Consequently, the controller applies cubic damping to the AHC, while reducing linear damping near its first natural frequency to replicate the biological cochlea’s function. Experimental results validate the model built in Part I of the paper and the work is extended to implement a multi-channel AHC. The system works independent of external sensors and offers significant advantages over previous generations of AHCs such as the ability to embed AHCs in a limited space and to combine several AHCs in an array without the need for external feedback measurement devices.

     
    more » « less