El Niño's impact on California precipitation: seasonality, regionality, and El Niño intensity
More Like this
-
El Niño’s intensity change under anthropogenic warming is of great importance to society, yet current climate models’ projections remain largely uncertain. The current classification of El Niño does not distinguish the strong from the moderate El Niño events, making it difficult to project future change of El Niño’s intensity. Here we classify 33 El Niño events from 1901 to 2017 by cluster analysis of the onset and amplification processes, and the resultant 4 types of El Niño distinguish the strong from the moderate events and the onset from successive events. The 3 categories of El Niño onset exhibit distinct development mechanisms. We find El Niño onset regime has changed from eastern Pacific origin to western Pacific origin with more frequent occurrence of extreme events since the 1970s. This regime change is hypothesized to arise from a background warming in the western Pacific and the associated increased zonal and vertical sea-surface temperature (SST) gradients in the equatorial central Pacific, which reveals a controlling factor that could lead to increased extreme El Niño events in the future. The Coupled Model Intercomparison Project phase 5 (CMIP5) models’ projections demonstrate that both the frequency and intensity of the strong El Niño events will increasemore »
-
Abstract The Late Campanian (Late Cretaceous), upper part of the El Disecado Member, El Gallo Formation, Baja California, México, preserves a rich fossil assemblage of microvertebrates and macrovertebrates, silicified logs, macroscopic plant remains, and pollen that was likely deposited as the distal part of a subaerial fan. The unit was episodic and high energy, with its salient features deriving from active river channels and sheet, debris-flow deposits. Landscape stability is indicated by the presence of compound paleosol horizons, containing Fe2O3 mottling in B horizons, cutans, and calcium carbonate concretions. All of these features indicate wet/dry cyclicity in subsurface horizons, likely attributable to such cyclicity in the climate. Drainage was largely to the north and to a lesser extent, the west; however, some current flow to the south and east is preserved which, in conjunction with the proximal location of marginal marine deposits, suggest the influence of tides in this setting. The fossil vertebrates preserved in this part of the El Disecado Member are almost exclusively allochthonous, preserved as disarticulated isolated clasts in hydraulic equivalence in the braided fluvial system. A relatively diverse microvertebrate assemblage is preserved, the largest components of which are first, dinosaurs, and second, turtles. Non-tetrapod fossils aremore »