skip to main content


Title: El Niño's impact on California precipitation: seasonality, regionality, and El Niño intensity
NSF-PAR ID:
10016680
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
11
Issue:
5
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 054021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    El Niño’s intensity change under anthropogenic warming is of great importance to society, yet current climate models’ projections remain largely uncertain. The current classification of El Niño does not distinguish the strong from the moderate El Niño events, making it difficult to project future change of El Niño’s intensity. Here we classify 33 El Niño events from 1901 to 2017 by cluster analysis of the onset and amplification processes, and the resultant 4 types of El Niño distinguish the strong from the moderate events and the onset from successive events. The 3 categories of El Niño onset exhibit distinct development mechanisms. We find El Niño onset regime has changed from eastern Pacific origin to western Pacific origin with more frequent occurrence of extreme events since the 1970s. This regime change is hypothesized to arise from a background warming in the western Pacific and the associated increased zonal and vertical sea-surface temperature (SST) gradients in the equatorial central Pacific, which reveals a controlling factor that could lead to increased extreme El Niño events in the future. The Coupled Model Intercomparison Project phase 5 (CMIP5) models’ projections demonstrate that both the frequency and intensity of the strong El Niño events will increase significantly if the projected central Pacific zonal SST gradients become enhanced. If the currently observed background changes continue under future anthropogenic forcing, more frequent strong El Niño events are anticipated. The models’ uncertainty in the projected equatorial zonal SST gradients, however, remains a major roadblock for faithful prediction of El Niño’s future changes. 
    more » « less
  2. null (Ed.)
    Abstract The Late Campanian (Late Cretaceous), upper part of the El Disecado Member, El Gallo Formation, Baja California, México, preserves a rich fossil assemblage of microvertebrates and macrovertebrates, silicified logs, macroscopic plant remains, and pollen that was likely deposited as the distal part of a subaerial fan. The unit was episodic and high energy, with its salient features deriving from active river channels and sheet, debris-flow deposits. Landscape stability is indicated by the presence of compound paleosol horizons, containing Fe2O3 mottling in B horizons, cutans, and calcium carbonate concretions. All of these features indicate wet/dry cyclicity in subsurface horizons, likely attributable to such cyclicity in the climate. Drainage was largely to the north and to a lesser extent, the west; however, some current flow to the south and east is preserved which, in conjunction with the proximal location of marginal marine deposits, suggest the influence of tides in this setting. The fossil vertebrates preserved in this part of the El Disecado Member are almost exclusively allochthonous, preserved as disarticulated isolated clasts in hydraulic equivalence in the braided fluvial system. A relatively diverse microvertebrate assemblage is preserved, the largest components of which are first, dinosaurs, and second, turtles. Non-tetrapod fossils are relatively uncommon, perhaps reflecting an absence of permanent standing water in this depositional setting. Here we report a high-precision U-Pb date of 74.706 + 0.028 Ma (2σ internal uncertainty), obtained from zircons in an airfall tuff. The tuff is located low within the sequence studied; therefore, most of the sedimentology and fossils reported here are slightly younger. This date, which improves upon previously published 40Ar/39Ar geochronology, ultimately allows for comparison of these El Gallo faunas and environments with coeval ones globally. Primary stable isotopic nodules associated with roots in the paleosols of the terrestrial portion of the El Disecado Member are compared with ratios from similar sources from coeval northern and eastern localities in North America. Distinctive latitudinal gradients are observed in both δ13C and δ18O, reflecting the unique southern and western, coastal geographic position of this locality. These differences are best explained by differences in the floras that populated the northern and eastern localities, relative to the southern and western floras reported here. 
    more » « less