skip to main content


Title: Molecular mechanisms of postmating prezygotic reproductive isolation uncovered by transcriptome analysis
Abstract

Little is known about the physiological responses and genetic mutations associated with reproductive isolation between species, especially for postmating prezygotic isolating barriers. Here, we examine changes in gene expression that accompany the expression of ‘unilateral incompatibility’ (UI)—a postmating prezygotic barrier in which fertilization is prevented by gamete rejection in the reproductive tract [in this case of pollen tubes (male gametophytes)] in one direction of a species cross, but is successful in the reciprocal crossing direction. We use whole‐transcriptome sequencing of multiple developmental stages of male and female tissues in twoSolanumspecies that exhibitUIto: (i) identify transcript differences betweenUI‐competent andUInoncompetent tissues; (ii) characterize transcriptional changes specifically associated with the phenotypic expression ofUI; and (iii) using these comparisons, evaluate the behaviour of a priori candidate loci forUIand identify new candidates for future manipulative work. In addition to describing transcriptome‐wide changes in gene expression that accompany this isolating barrier, we identify at least five strong candidates for involvement in postmating prezygotic incompatibility between species. These include three novel candidates and two candidates that are strongly supported by prior developmental, functional, and quantitative trait locus mapping studies. These latter genes are known molecular players in the intraspecific expression of mate choice via genetic self‐incompatibility, and our study supports prior evidence that these inter‐ and intraspecific postmating prezygotic reproductive behaviours share specific genetic and molecular mechanisms.

 
more » « less
NSF-PAR ID:
10016886
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology
Volume:
25
Issue:
11
ISSN:
0962-1083
Page Range / eLocation ID:
p. 2592-2608
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Postmating reproductive isolation can help maintain species boundaries when premating barriers to reproduction are incomplete. The strength and identity of postmating reproductive barriers are highly variable among diverging species, leading to questions about their genetic basis and evolutionary drivers. These questions have been tackled in model systems but are less often addressed with broader phylogenetic resolution. In this study we analyse patterns of genetic divergence alongside direct measures of postmating reproductive barriers in an overlooked group of sympatric species within the model monkeyflower genus, Mimulus. Within this Mimulus brevipes species group, we find substantial divergence among species, including a cryptic genetic lineage. However, rampant gene discordance and ancient signals of introgression suggest a complex history of divergence. In addition, we find multiple strong postmating barriers, including postmating prezygotic isolation, hybrid seed inviability and hybrid male sterility. M. brevipes and M. fremontii have substantial but incomplete postmating isolation. For all other tested species pairs, we find essentially complete postmating isolation. Hybrid seed inviability appears linked to differences in seed size, providing a window into possible developmental mechanisms underlying this reproductive barrier. While geographic proximity and incomplete mating isolation may have allowed gene flow within this group in the distant past, strong postmating reproductive barriers today have likely played a key role in preventing ongoing introgression. By producing foundational information about reproductive isolation and genomic divergence in this understudied group, we add new diversity and phylogenetic resolution to our understanding of the mechanisms of plant speciation.

    Abstract

    Hybrid seed inviability and other postmating reproductive barriers isolate species in Mimulus section Eunanus. Variation in seed size may help explain hybrid seed failure. Whole-genome sequencing indicates a complex history of divergence, including signals of ancient introgression and cryptic diversity.

     
    more » « less
  2. Abstract

    The eastern oyster (Crassostrea virginica) is a protandrous hermaphrodite of commercial importance. As with many marine invertebrates, little is known about sex determination and differentiation systems in this species. Such knowledge has important implications not only for understanding the evolution of sex but also for applied questions in aquaculture. In order to examine mechanistic differences in reproductive development between the sexes, we compared the transcriptomes of gonad and mantle tissues from six male and six female oysters. A total of 7675 transcripts were differentially expressed between male and female gonads (3936 and 3739 were upregulated in males and females, respectively). Transcripts identified include those associated with sex in other invertebrate and vertebrate species such asDmrt1,Sox‐30,Bindin,Dpy‐30, andHistone H4in males andFoxl2,Vitellogenin, andBystinin females. GO terms associated with transcripts upregulated in male gonads include protein modification, reproductive process, and cell projection organization, whereas RNA metabolic process and amino acid metabolic process were associated with transcripts upregulated in females. Far fewer transcripts were differentially expressed between male and female mantle tissues, with 87 transcripts upregulated in females and 16 upregulated in males. However, 41% of transcripts identified as differentially expressed between mantle tissues were also differentially expressed between male and female gonads includingHistone H4andBystin. This study represents the first characterization of eastern oyster male and female gonad transcriptomes. We further identify differing expression profiles between male and female mantle tissues, which provides evidence for sex‐specific functions of the mantle and suggests that this tissue could harbor biomarkers for identifying oyster sex non‐destructively.

     
    more » « less
  3. Summary

    Maize (Zea maysL.), a model species for genetic studies, is one of the two most important crop species worldwide. The genome sequence of the reference genotype, B73, representative of the stiff stalk heterotic group was recently updated (AGPv4) using long‐read sequencing and optical mapping technology. To facilitate the use ofAGPv4 and to enable functional genomic studies and association of genotype with phenotype, we determined expression abundances for replicatedmRNA‐sequencing datasets from 79 tissues and five abiotic/biotic stress treatments revealing 36 207 expressed genes. Characterization of the B73 transcriptome across six organs revealed 4154 organ‐specific and 7704 differentially expressed (DE) genes following stress treatment. Gene co‐expression network analyses revealed 12 modules associated with distinct biological processes containing 13 590 genes providing a resource for further association of gene function based on co‐expression patterns. Presence−absence variants (PAVs) previously identified using whole genome resequencing data from 61 additional inbred lines were enriched in organ‐specific and stress‐induced DE genes suggesting thatPAVs may function in phenological variation and adaptation to environment. Relative to core genes conserved across the 62 profiled inbreds,PAVs have lower expression abundances which are correlated with their frequency of dispersion across inbreds and on average have significantly fewer co‐expression network connections suggesting that a subset ofPAVs may be on an evolutionary path to pseudogenization. To facilitate use by the community, we developed the Maize Genomics Resource website (maize.plantbiology.msu.edu) for viewing and data‐mining these resources and deployed two new views on the maize electronic Fluorescent Pictograph Browser (bar.utoronto.ca/efp_maize).

     
    more » « less
  4. Abstract

    One fundamental signature of reinforcement is elevated prezygotic reproductive isolation between related species in sympatry relative to allopatry. However, this alone is inadequate evidence for reinforcement, as traits conferring reproductive isolation can occur as a by‐product of other forces. We conducted crosses betweenSilene latifoliaandS. diclinis, two closely related dioecious flowering plant species. Crosses withS. latifoliamothers from sympatry exhibited lower seed set than mothers from five allopatric populations whenS. dicliniswas the father. However, two other allopatric populations also exhibited low seed set. A significant interaction between style length and sire species revealed that seed set declined as style length increased when interspecific, but not intraspecific, fathers where used. Moreover, by varying the distance pollen tubes had to traverse, we found interspecific pollen placement close to the ovary resulted in seed set in both long‐ and short‐styledS. latifoliamothers. Our results reveal that the long styles ofS. latifoliain sympatry withS. dicliniscontribute to the prevention of hybrid formation. We argue that forces other than reinforcing selection are likely to be responsible for the differences in style length seen in sympatry.

     
    more » « less
  5. Abstract Purpose

    The veiled chameleon (Chamaeleo calyptratus) is an emerging model system for studying functional morphology and evolutionary developmental biology (evo‐devo). Chameleons possess body plans that are highly adapted to an arboreal life style, featuring laterally compressed bodies, split hands/ft for grasping, a projectile tongue, turreted independently moving eyes, and a prehensile tail. Despite being one of the most phenotypically divergent clades of tetrapods, genomic resources for chameleons are severely lacking.

    Methods

    To address this lack of resources, we used RNAseq to generate 288 million raw Illumina sequence reads from four adult tissues (male and female eyes and gonads) and whole embryos at three distinct developmental stages. We used these data to assemble a largely complete de novo transcriptome consisting of only 82 952 transcripts. In addition, a majority of assembled transcripts (67%) were successfully annotated.

    Results

    We then demonstrated the utility of these data in the context of studying visual system evolution by examining the content of veiled chameleon opsin genes to show that chameleons possess all five ancestral tetrapod opsins.

    Conclusion

    We present this de novo, annotated, multi‐tissue transcriptome assembly for the Veiled Chameleon,Chamaeleo calyptratus, as a resource to address a range of evolutionary and developmental questions. The associated raw reads and final annotated transcriptome assembly are freely available for use on NCBI and Figshare, respectively.

     
    more » « less