skip to main content

Title: The oceanic concordance of phylogeography and biogeography: a case study in Notochthamalus

Dispersal and adaptation are the two primary mechanisms that set the range distributions for a population or species. As such, understanding how these mechanisms interact in marine organisms in particular – with capacity for long‐range dispersal and a poor understanding of what selective environments species are responding to – can provide useful insights for the exploration of biogeographic patterns. Previously, the barnacleNotochthamalus scabrosushas revealed two evolutionarily distinct lineages with a joint distribution that suggests an association with one of the two major biogeographic boundaries (~30°S) along the coast of Chile. However, spatial and genomic sampling of this system has been limited until now. We hypothesized that given the strong oceanographic and environmental shifts associated with the other major biogeographic boundary (~42°S) for Chilean coastal invertebrates, the southern mitochondrial lineage would dominate or go to fixation in locations further to the south. We also evaluated nuclear polymorphism data from 130 single nucleotide polymorphisms to evaluate the concordance of the signal from the nuclear genome with that of the mitochondrial sample. Through the application of standard population genetic approaches along with a Lagrangian ocean connectivity model, we describe the codistribution of these lineages through a simultaneous evaluation of coastal lineage frequencies, an approximation of larval behavior, and current‐driven dispersal. Our results show that this pattern could not persist without the two lineages having distinct environmental optima. We suggest that a more thorough integration of larval dynamics, explicit dispersal models, and near‐shore environmental analysis can explain much of the coastal biogeography of Chile.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Medium: X Size: p. 4403-4420
["p. 4403-4420"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    As within‐species genomic data have been shown useful in interpreting broader biogeographic trends, we analysed the mode of population genomic isolation involved in a well‐studied intertidal genomic cline to better understand the mechanisms maintaining it. These results were interpreted in the context of spatial variation in habitat use and availability as well as likely fitness consequences for hybridization between the two lineages.


    Pacific coast of North America.


    Arthropods (Class Maxillopoda, Order Sessilia, Family Balanidae;Balanus glandula).


    Genotype‐by‐sequencing approaches were used to generate single‐nucleotide polymorphism markers across sites sampled between southern Alaska and Southern California. Inference using standard population genomic methods, including analysis of population structure, inbreeding and linkage disequilibrium, was used to identify the steepest transitions across the largest number of loci examined. These data were put in the context of observed population density and habitat availability.


    We show that the majority of markers analysed show strong clinal transitions in a very narrow portion of the California coast. Patterns of linkage disequilibrium among markers, along with prior evidence of variation in reproductive potential by latitude and by mitochondrial lineage, suggest some reproductive isolation among the northern and southern lineages ofB. glandulathat are concordant with the drop in population density and habitat availability in central California.

    Main Conclusions

    A significant clinal transition in genomic diversity is stronger and more localized than previously recognized and exhibits statistical patterns suggesting that the lineages are reproductively and phenotypically distinct in ways that may be ecologically important. As this species has been used to infer process in coastal biogeography, further study of concordant patterns will be important for advancing our understanding of this region.

    more » « less
  2. Abstract

    We present a phylogeographic study of at least six reproductively isolated lineages of new world harvester ants within thePogonomyrmex barbatusandP. rugosusspecies group. The genetic and geographic relationships within this clade are complex: Four of the identified lineages show genetic caste determination (GCD) and are divided into two pairs. Each pair has evolved under a mutualistic system that necessitates sympatry. These paired lineages are dependent upon one another because theirGCDrequires interlineage matings for the production of F1 hybrid workers, and intralineage matings are required to produce queens. ThisGCDsystem maintains genetic isolation among these interdependent lineages, while simultaneously requiring co‐expansion and emigration as their distributions have changed over time. It has also been demonstrated that three of these fourGCDlineages have undergone historical hybridization, but the narrower sampling range of previous studies has left questions on the hybrid parentage, breadth, and age of these groups. Thus, reconstructing the phylogenetic and geographic history of this group allows us to evaluate past insights and hypotheses and to plan future inquiries in a more complete historical biogeographic context. Using mitochondrialDNAsequences sampled across most of the morphospecies’ ranges in the U.S.A. and Mexico, we conducted a detailed phylogeographic study. Remarkably, our results indicate that one of theGCDlineage pairs has experienced a dramatic range expansion, despite the genetic load and fitness costs of theGCDsystem. Our analyses also reveal a complex pattern of vicariance and dispersal inPogonomyrmexharvester ants that is largely concordant with models of late Miocene, Pliocene, and Pleistocene range shifts among various arid‐adapted taxa in North America.

    more » « less
  3. The banded coral shrimp, Stenopus hispidus (Crustacea: Decapoda: Stenopodidea) is a popular marine ornamental species with a circumtropical distribution. The planktonic larval stage lasts ∼120–253 days, indicating considerable dispersal potential, but few studies have investigated genetic connectivity on a global scale in marine invertebrates. To resolve patterns of divergence and phylogeography of S. hispidus , we surveyed 525 bp of mitochondrial cytochrome c oxidase subunit I (COI) from 198 individuals sampled at 10 locations across ∼27,000 km of the species range. Phylogenetic analyses reveal that S. hispidus has a Western Atlantic lineage and a widely distributed Indo-Pacific lineage, separated by sequence divergence of 2.1%. Genetic diversity is much higher in the Western Atlantic ( h = 0.929; π  = 0.004) relative to the Indo-Pacific ( h = 0.105; π  < 0.001), and coalescent analyses indicate that the Indo-Pacific population expanded more recently (95% HPD (highest posterior density) = 60,000–400,000 yr) than the Western Atlantic population (95% HPD = 300,000–760,000 yr). Divergence of the Western Atlantic and Pacific lineages is estimated at 710,000–1.8 million years ago, which does not readily align with commonly implicated colonization events between the ocean basins. The estimated age of populations contradicts the prevailing dispersal route for tropical marine biodiversity (Indo-Pacific to Atlantic) with the oldest and most diverse population in the Atlantic, and a recent population expansion with a single common haplotype shared throughout the vast Indian and Pacific oceans. In contrast to the circumtropical fishes, this diminutive reef shrimp challenges our understanding of conventional dispersal capabilities of marine species. 
    more » « less
  4. Abstract Aim

    Pleistocene climate and associated environmental changes have influenced phylogeographic patterns of many species. These not only depend on a species’ life history but also vary regionally. Consequently, populations of widespread species that occur in several biomes might display different evolutionary trajectories. We aimed to identify regional drivers of diversification in the common pheasant, a widely distributed ecological generalist.




    Common pheasantPhasianus colchicus.


    Using a comprehensive geographical sampling of 204 individuals from the species’ entire range genotyped at seven nuclear and two mitochondrial loci, we reconstructed spatio‐temporal diversification and demographic history of the common pheasant. We applied Bayesian phylogenetic inference to describe phylogeographic structure, generated a species tree and inferred demographic history within and migration between lineages. Moreover, to establish a taxonomic framework, we conducted a species delimitation analysis.


    The common pheasant diversified during the Late Pleistocene into eight distinct lineages. It originated at the edge of the Qinghai–Tibetan plateau and spread to East and Central Asia. Only the widely distributed lowland lineage of East Asia displayed recent range expansion. Greater phylogeographic structure was identified elsewhere, with lineages showing no sign of recent demographic changes. One lineage in south‐central China is the result of long‐term isolation within a climatically stable but topographically complex region. In lineages from arid Central Asia and China, range expansions were impeded by repeated population fragmentation during dry glacial periods and by recent aridification.

    Main conclusions

    Spatio‐temporal phylogeographic frameworks of widespread taxa such as the common pheasant provide valuable opportunities to identify divergent drivers of regional diversification. Our results suggest that diversification and population histories in the eight distinct evolutionary lineages were shaped by regionally variable effects of past climate and associated environmental changes. The evolutionary history of the common pheasant is best reflected by its being split into three species.

    more » « less
  5. Abstract

    The Africanized honey bee (AHB) is a New World amalgamation of several subspecies of the western honey bee (Apis mellifera), a diverse taxon historically grouped into four major biogeographic lineages: A (African), M (Western European), C (Eastern European), and O (Middle Eastern). In 1956, accidental release of experimentally bred “Africanized” hybrids from a research apiary in Sao Paulo, Brazil initiated a hybrid species expansion that now extends from northern Argentina to northern California (U.S.A.). Here, we assess nuclear admixture and mitochondrial ancestry in 60 bees from four countries (Panamá; Costa Rica, Mexico; U.S.A) across this expansive range to assess ancestry of AHB several decades following initial introduction and test the prediction that African ancestry decreases with increasing latitude. We find that AHB nuclear genomes from Central America and Mexico have predominately African genomes (76%–89%) with smaller contributions from Western and Eastern European lineages. Similarly, nearly all honey bees from Central America and Mexico possess mitochondrial ancestry from the African lineage with few individuals having European mitochondria. In contrast, AHB from San Diego (CA) shows markedly lower African ancestry (38%) with substantial genomic contributions from all four major honey bee lineages and mitochondrial ancestry from all four clades as well. Genetic diversity measures from all New World populations equal or exceed those of ancestral populations. Interestingly, the feral honey bee population of San Diego emerges as a reservoir of diverse admixture and high genetic diversity, making it a potentially rich source of genetic material for honey bee breeding.

    more » « less