skip to main content

Title: Micropolar effect on the cataclastic flow and brittle-ductile transition in high-porosity rocks: MICROPOLAR BRITTLE-DUCTILE TRANSITION
; ;
Award ID(s):
1462760 1520732 1516300
Publication Date:
Journal Name:
Journal of Geophysical Research: Solid Earth
Page Range or eLocation-ID:
1425 to 1440
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Carbonate sediments play a prominent role on the global geological stage as they store more than $$60\%$$ 60 % of world’s oil and $$40\%$$ 40 % of world’s gas reserves. Prediction of the deformation and failure of porous carbonates is, therefore, essential to minimise reservoir compaction, fault reactivation, or wellbore instability. This relies on our understanding of the mechanisms underlying the observed inelastic response to fluid injection or deviatoric stress perturbations. Understanding the impact of deformation/failure on the hydraulic properties of the rock is also essential as injection/production rates will be affected. In this work, we present new experimental results from triaxial deformation experiments carried out to elucidate the behaviour of a porous limestone reservoir analogue (Savonnières limestone). Drained triaxial and isotropic compression tests were conducted at five different confining pressures in dry and water-saturated conditions. Stress–strain data and X-ray tomography images of the rock indicate two distinct types of deformation and failure regimes: at low confinement (10 MPa) brittle failure in the form of dilatant shear banding was dominant; whereas at higher confinement compaction bands orthogonal to the maximum principal stress formed. In addition to the pore pressure effect, the presence of water in the pore space significantlymore »weakened the rock, thereby shrinking the yield envelope compared to the dry conditions, and shifted the brittle–ductile transition to lower effective confining pressures (from 35 MPa to 29 MPa). Finally, permeability measurements during deformation show a reduction of an order of magnitude in the ductile regime due to the formation of the compaction bands. These results highlight the importance of considering the role of the saturating fluid in the brittle–ductile response of porous rocks and elucidate some of the microstructural processes taking place during this transition.« less