skip to main content


Title: Random-effects meta-analysis for systematic reviews of phase I clinical trials: Rare events and missing data: Phase I Clinical Trials Meta-Analysis
NSF-PAR ID:
10017690
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Research Synthesis Methods
ISSN:
1759-2879
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Many clinical endpoint measures, such as the number of standard drinks consumed per week or the number of days that patients stayed in the hospital, are count data with excessive zeros. However, the zero‐inflated nature of such outcomes is sometimes ignored in analyses of clinical trials. This leads to biased estimates of study‐level intervention effect and, consequently, a biased estimate of the overall intervention effect in a meta‐analysis. The current study proposes a novel statistical approach, the Zero‐inflation Bias Correction (ZIBC) method, that can account for the bias introduced when using the Poisson regression model, despite a high rate of inflated zeros in the outcome distribution of a randomized clinical trial. This correction method only requires summary information from individual studies to correct intervention effect estimates as if they were appropriately estimated using the zero‐inflated Poisson regression model, thus it is attractive for meta‐analysis when individual participant‐level data are not available in some studies. Simulation studies and real data analyses showed that the ZIBC method performed well in correcting zero‐inflation bias in most situations.

     
    more » « less
  2. Abstract

    Clinical trials establish the standard of cancer care, yet the evolution and characteristics of the social dynamics between the people conducting this work remain understudied. We performed a social network analysis of authors publishing chemotherapy-based prospective trials from 1946 to 2018 to understand how social influences, including the role of gender, have influenced the growth and development of this network, which has expanded exponentially from fewer than 50 authors in 1946 to 29,197 in 2018. While 99.4% of authors were directly or indirectly connected by 2018, our results indicate a tendency to predominantly connect with others in the same or similar fields, as well as an increasing disparity in author impact and number of connections. Scale-free effects were evident, with small numbers of individuals having disproportionate impact. Women were under-represented and likelier to have lower impact, shorter productive periods (P < 0.001 for both comparisons), less centrality, and a greater proportion of co-authors in their same subspecialty. The past 30 years were characterized by a trend towards increased authorship by women, with new author parity anticipated in 2032. The network of cancer clinical trialists is best characterized as strategic or mixed-motive, with cooperative and competitive elements influencing its appearance. Network effects such as low centrality, which may limit access to high-profile individuals, likely contribute to the observed disparities.

     
    more » « less
  3. An immunotherapy trial often uses the phase I/II design to identify the optimal biological dose, which monitors the efficacy and toxicity outcomes simultaneously in a single trial. The progression-free survival rate is often used as the efficacy outcome in phase I/II immunotherapy trials. As a result, patients developing disease progression in phase I/II immunotherapy trials are generally seriously ill and are often treated off the trial for ethical consideration. Consequently, the happening of disease progression will terminate the toxicity event but not vice versa, so the issue of the semi-competing risks arises. Moreover, this issue can become more intractable with the late-onset outcomes, which happens when a relatively long follow-up time is required to ascertain progression-free survival. This paper proposes a novel Bayesian adaptive phase I/II design accounting for semi-competing risks outcomes for immunotherapy trials, referred to as the dose-finding design accounting for semi-competing risks outcomes for immunotherapy trials (SCI) design. To tackle the issue of the semi-competing risks in the presence of late-onset outcomes, we re-construct the likelihood function based on each patient's actual follow-up time and develop a data augmentation method to efficiently draw posterior samples from a series of Beta-binomial distributions. We propose a concise curve-free dose-finding algorithm to adaptively identify the optimal biological dose using accumulated data without making any parametric dose–response assumptions. Numerical studies show that the proposed SCI design yields good operating characteristics in dose selection, patient allocation, and trial duration. 
    more » « less
  4. Phase I clinical trials are the first step in drug development to test a new drug or drug combination on humans. Typical designs of Phase I trials use toxicity as the primary endpoint and aim to find the maximum tolerable dosage. However, these designs are poorly applicable for the development of cancer therapeutic vaccines because the expected safety concerns for these vaccines are not as much as cytotoxic agents. The primary objectives of a cancer therapeutic vaccine phase I trial thus often include determining whether the vaccine shows biologic activity and the minimum dose necessary to achieve a full immune or even clinical response. In this paper, we propose a new Bayesian phase I trial design that allows simultaneous evaluation of safety and immunogenicity outcomes. We demonstrate the proposed clinical trial design by both a numeric study and a therapeutic human papillomavirus vaccine trial.

     
    more » « less