Root‐associated fungi, particularly ectomycorrhizal fungi (
In stressful environments, facilitation often aids plant establishment, but invasive plant pathogens may potentially disrupt these interactions. In many treeline communities in the northern
- PAR ID:
- 10017764
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology and Evolution
- Volume:
- 6
- Issue:
- 15
- ISSN:
- 2045-7758
- Format(s):
- Medium: X Size: p. 5144-5157
- Size(s):
- p. 5144-5157
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract EMF ), are critical symbionts of all boreal tree species. Although climatically driven increases in wildfire frequency and extent have been hypothesized to increase vegetation transitions from tundra to boreal forest, fire reduces mycorrhizal inoculum. Therefore, changes in mycobiont inoculum may potentially limit tree‐seedling establishment beyond current treeline. We investigated whether ectomycorrhizal shrubs that resprout after fire support similar fungal taxa to those that associate with tree seedlings that establish naturally after fire. We then assessed whether mycobiont identity correlates with the biomass or nutrient status of these tree seedlings. The majority of fungal taxa observed on shrub and seedling root systems wereEMF , with some dark septate endophytes and ericoid mycorrhizal taxa. Seedlings and adjacent shrubs associated with similar arrays of fungal taxa, and there were strong correlations between the structure of seedling and shrub fungal communities. These results show that resprouting postfire shrubs support fungal taxa compatible with tree seedlings that establish after wildfire. Shrub taxon, distance to the nearest shrub and fire severity influenced the similarity between seedling and shrub fungal communities. Fungal composition was correlated with both foliar C:N ratio and seedling biomass and was one of the strongest explanatory variables predicting seedling biomass. While correlative, these results suggest that mycobionts are important to nutrient acquisition and biomass accrual of naturally establishing tree seedlings at treeline and that mycobiont taxa shared by resprouting postfire vegetation may be a significant source of inoculum for tree‐seedling establishment beyond current treeline. -
Abstract Brassinosteroids (
BRs ) are essential plant growth‐promoting hormones involved in many processes throughout plant development, from seed germination to flowering time. SinceBRs do not undergo long‐distance transport, cell‐ and tissue‐specific regulation of hormone levels involves both biosynthesis and inactivation. To date, tenBR ‐inactivating enzymes, with at least five distinct biochemical activities, have been experimentally identified in the model plantArabidopsis thaliana . Epigenetic interactions betweenT‐DNA insertion alleles and genetic linkage have hindered analysis of higher‐order null mutants in these genes. A previous study demonstrated that thebas1‐2 sob7‐1 ben1‐1 triple‐null mutant could not be characterized due to epigenetic interactions between the exonicT‐DNA insertions inbas1‐2 andsob7‐1, causing the intronicT‐DNA insertion ofben1‐1 to revert to a partial loss‐of‐function allele. We usedCRISPR‐Cas9 genome editing to avoid this problem and generated thebas1‐2 sob7‐1 ben1‐3 triple‐null mutant. This triple‐null mutant resulted in an additive seedling long‐hypocotyl phenotype. We also uncovered a role for ‐mediatedBEN1 BR ‐inactivation in seedling cotyledon petiole elongation that was not observed in the singleben1‐2 null mutant but only in the absence of both andBAS1 . In addition, genetic analysis demonstrated thatSOB7 does not contribute to the early‐flowering phenotype, whichBEN1 andBAS1 redundantly regulate. Our results show thatSOB7 ,BAS1 andBEN1 , have overlapping and independent roles based on their differential spatiotemporal tissue expression patternsSOB7 -
1. As trees age, they undergo significant physiological and morphological changes. Nevertheless, tree ontogeny and its impacts on herbivores are often overlooked as determinants of plant–herbivore population dynamics and the strength of plant–herbivore interactions.
2.
Juniperus (Cupressaceae) is a dominant, long‐lived conifer that serves as the sole host to a specialised assemblage of caterpillars. Over the past 150 years, several juniper species in western North America have expanded their geographic occupancy at local and regional scales, which has resulted in an increase in the number of immature trees on the landscape. Using assays in the laboratory, the effects of tree ontogeny on caterpillar performance and oviposition preference for two juniper specialist caterpillars, (Lycaenidae) andCallophrys gryneus Glena quinquelinearia (Geometridae), were examined. The study considered whether responses to tree ontogeny were consistent across caterpillar species and juniper host species.3. Tree age was found to be a reliable predictor of caterpillar performance, with caterpillars developing more quickly and growing larger when fed foliage from young trees. Differences in the phytochemical diversity between foliage from trees of different ages might help to explain observed differences in caterpillar performance. Interestingly, the specialist butterfly,
, displayed an oviposition preference for foliage from old‐growthC. gryneus trees, despite the fact that larvae of this species performed poorly on older trees.Juniperus osteosperma 4. It is concluded that young juniper trees are an important resource for the specialised Lepidopteran community and that tree ontogeny is an important component of intraspecific variation, which contributes to the structure of plant–herbivore communities.
-
Abstract Questions What are the primary biotic and abiotic factors driving composition and abundance of naturally regenerated tree seedlings across forest landscapes of Maine? Do seedling species richness (
SR ) and density (SD ) decrease with improved growing conditions (climate and soil), but increase with increased diversity of overstorey composition and structure? Does partial harvesting disproportionately favour relative dominance of shade‐intolerant hardwoods (PIHD ) over shade‐tolerant softwoods (PTSD )?Location Forest landscapes across the diverse eco‐regions and forest types of Maine,
USA .Methods This study used
USDA Forest Service Forest Inventory Analysis permanent plots (n = 10 842), measured every 5 yr since 1999. The best models for each response variable (SR ,SD ,PIHD andPTSD ) were developed based onAIC and biological interpretability, while considering 35 potential explanatory variables incorporating climate, soil, site productivity, overstorey structure and composition, and past harvesting.Results Mean annual temperature was the most important abiotic factor, whereas overstorey tree size diversity was the most important biotic factor for
SR andSD . Both mean annual temperature and overstorey tree size diversity had a curvilinear relationship withSR andSD . Average overstorey shade tolerance and percentage tolerant softwood basal area in the overstorey were the top predictor variables ofPIHD andPTSD , respectively. Partial harvesting favouredPIHD but notPTSD .Conclusions This is one of the first studies to comprehensively evaluate a number of factors influencing naturally established tree seedlings at a broad landscape scale in the Northern Forest region of the eastern
USA and Canada. Despite limitations associated with relatively small plot size, large seedling size class and lack of direct measurements of light, water and nutrients, this study documents the influence of these factors amid high variability associated with patterns of natural regeneration. The curvilinear relationship between mean annual temperature withSR andSD supports the argument that species richness and abundance usually have unimodal relationships with productivity indicators, whereas the curvilinear relationship between overstorey tree size diversity andSR andSD suggest that moderate overstorey diversity incorporates multiple species as well as higher seedling individuals. -
Summary Successive droughts have resulted in extensive tree mortality in the southwestern United States. Recovery of these areas is dependent on the survival and recruitment of young trees. For trees that rely on ectomycorrhizal fungi (
EMF ) for survival and growth, changes in soil fungal communities following tree mortality could negatively affect seedling establishment.We used tree‐focused and stand‐scale measurements to examine the impact of pinyon pine mortality on the performance of surviving juvenile trees and the potential for mutualism limitation of seedling establishment via altered
EMF communities.Mature pinyon mortality did not affect the survival of juvenile pinyons, but increased their growth. At both tree and stand scales, high pinyon mortality had no effect on the abundance of
EMF inocula, but led to alteredEMF community composition including increased abundance ofGeopora and reduced abundance ofTuber . Seedling biomass was strongly positively associated withTuber abundance, suggesting that reductions in this genus with pinyon mortality could have negative consequences for establishing seedlings.These findings suggest that whereas mature pinyon mortality led to competitive release for established juvenile pinyons, changes in
EMF community composition with mortality could limit successful seedling establishment and growth in high‐mortality sites.