skip to main content


Title: Potential tropical Atlantic impacts on Pacific decadal climate trends: ATLANTIC IMPACTS ON PACIFIC CLIMATE
NSF-PAR ID:
10017833
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
43
Issue:
13
ISSN:
0094-8276
Page Range / eLocation ID:
7143 to 7151
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract South American climate is influenced by both Atlantic multidecadal variability (AMV) and Pacific multidecadal variability (PMV). But how they jointly affect South American precipitation and surface air temperature is not well understood. Here we analyze composite anomalies to quantify their combined impacts using observations and reanalysis data. During an AMV warm (cold) phase, PMV-induced JJA precipitation anomalies are more positive (negative) over 0°-10°S and southeastern South America, but more negative (positive) over the northern Amazon and central Brazil. PMV-induced precipitation anomalies in DJF are more positive (negative) over Northeast Brazil and southeastern South America during the warm (cold) AMV phase, but more negative (positive) over the central Amazon Basin and central-eastern Brazil. PMV’s impact on AMV-induced precipitation anomalies shows similar dipole patterns. The precipitation changes result from perturbations of the local Hadley and Walker Circulations. In JJA, PMV- and AMV-induced temperature anomalies are more positive (negative) over entire South America when the other basin is in a warm (cold) phase, but in DJF temperature anomalies are more positive (negative) only over the central Andes and central-eastern Brazil and more negative (positive) over southeastern South America and Patagonia. Over central Brazil in JJA and southern Bolivia and northern Argentina in DJF, the temperature and precipitation anomalies are negatively correlated. Our results show that the influence of Pacific and Atlantic multidecadal variability need to be considered jointly, as significant departures from the mean AMV or PMV fingerprint can occur during a cold or warm phase of the other basin’s mode. 
    more » « less
  2. In future climate simulations there is a pronounced region of reduced warming in the subpolar gyre of the North Atlantic Ocean known as the North Atlantic warming hole (NAWH). This study investigates the impact of the North Atlantic warming hole on atmospheric circulation and midlatitude jets within the Community Earth System Model (CESM). A series of large-ensemble atmospheric model experiments with prescribed sea surface temperature (SST) and sea ice are conducted, in which the warming hole is either filled or deepened. Two mechanisms through which the NAWH impacts the atmosphere are identified: a linear response characterized by a shallow atmospheric cooling and increase in sea level pressure shifted slightly downstream of the SST changes, and a transient eddy forced response whereby the enhanced SST gradient produced by the NAWH leads to increased transient eddy activity that propagates vertically and enhances the midlatitude jet. The relative contributions of these two mechanisms and the details of the response are strongly dependent on the season, time period, and warming hole strength. Our results indicate that the NAWH plays an important role in midlatitude atmospheric circulation changes in CESM future climate simulations 
    more » « less
  3. Abstract

    By synthesizing recent studies employing a wide range of approaches (modern observations, paleo reconstructions, and climate model simulations), this paper provides a comprehensive review of the linkage between multidecadal Atlantic Meridional Overturning Circulation (AMOC) variability and Atlantic Multidecadal Variability (AMV) and associated climate impacts. There is strong observational and modeling evidence that multidecadal AMOC variability is a crucial driver of the observed AMV and associated climate impacts and an important source of enhanced decadal predictability and prediction skill. The AMOC‐AMV linkage is consistent with observed key elements of AMV. Furthermore, this synthesis also points to a leading role of the AMOC in a range of AMV‐related climate phenomena having enormous societal and economic implications, for example, Intertropical Convergence Zone shifts; Sahel and Indian monsoons; Atlantic hurricanes; El Niño–Southern Oscillation; Pacific Decadal Variability; North Atlantic Oscillation; climate over Europe, North America, and Asia; Arctic sea ice and surface air temperature; and hemispheric‐scale surface temperature. Paleoclimate evidence indicates that a similar linkage between multidecadal AMOC variability and AMV and many associated climate impacts may also have existed in the preindustrial era, that AMV has enhanced multidecadal power significantly above a red noise background, and that AMV is not primarily driven by external forcing. The role of the AMOC in AMV and associated climate impacts has been underestimated in most state‐of‐the‐art climate models, posing significant challenges but also great opportunities for substantial future improvements in understanding and predicting AMV and associated climate impacts.

     
    more » « less
  4. In future climate simulations there is a pronounced region of reduced warming in the subpolar gyre of the North Atlantic Ocean known as the North Atlantic warming hole (NAWH). This study investigates the impact of the North Atlantic warming hole on atmospheric circulation and midlatitude jets within the Community Earth System Model (CESM). A series of large-ensemble atmospheric model experiments with prescribed sea surface temperature (SST) and sea ice are conducted, in which the warming hole is either filled or deepened. Two mechanisms through which the NAWH impacts the atmosphere are identified: a linear response characterized by a shallow atmospheric cooling and increase in sea level pressure shifted slightly downstream of the SST changes, and a transient eddy forced response whereby the enhanced SST gradient produced by the NAWH leads to increased transient eddy activity that propagates vertically and enhances the midlatitude jet. The relative contributions of these two mechanisms and the details of the response are strongly dependent on the season, time period, and warming hole strength. Our results indicate that the NAWH plays an important role in midlatitude atmospheric circulation changes in CESM future climate simulations.

     
    more » « less