skip to main content


Title: Fitness implications of seasonal climate variation in Columbian ground squirrels
Abstract

The influence of climate change on the fitness of wild populations is often studied in the context of the spring onset of the reproductive season. This focus is relevant for climate influences on reproductive success, but neglects other fitness‐relevant periods (e.g., autumn preparation for overwintering). We examined variation in climate variables (temperature, rainfall, snowfall, and snowpack) across the full annual cycle of Columbian ground squirrels (Urocitellus columbianus) for 21 years. We investigated seasonal climate variables that were associated with fitness variables, climate variables that exhibited directional changes across the study period, and finally observed declines in fitness (−0.03 units/year; total decline = 37%) that were associated with directional changes in climate variables. Annual fitness of adult female ground squirrels was positively associated with spring temperature (= 0.69) and early summer rainfall (= 0.56) and negatively associated with spring snow conditions (= −0.44 to −0.66). Across the 21 years, spring snowmelt has become significantly delayed (= 0.48) and summer rainfall became significantly reduced (= −0.53). Using a standardized partial regression model, we found that directional changes in the timing of spring snowmelt and early summer rainfall (i.e., progressively drier summers) had moderate influences on annual fitness, with the latter statistically significant (ρ = −0.314 and 0.437, respectively). The summer period corresponds to prehibernation fattening of young and adult ground squirrels. Had we focused on a single point in time (viz. the onset of the breeding season), we would have underestimated the influences of climate change on our population. Rather, we obtained a comprehensive understanding of the influences of climate change on individual fitness by investigating the full lifecycle.

 
more » « less
NSF-PAR ID:
10018153
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
6
Issue:
16
ISSN:
2045-7758
Format(s):
Medium: X Size: p. 5614-5622
Size(s):
["p. 5614-5622"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In Mediterranean climates, the timing of seasonal rains determines germination, flowering phenology and fitness. As climate change alters seasonal precipitation patterns, it is important to ask how these changes will affect the phenology and fitness of plant populations. We addressed this question experimentally with the annual plant speciesArabidopsis thaliana.

    In a first experiment, we manipulated the date of rainfall onset and recorded germination phenology on sand and soil substrates. In a second experiment, we manipulated germination date, growing season length and mid‐season drought to measure their effects on flowering time and fitness. Within each experiment, we manipulated seed dormancy and flowering time using multilocus near‐isogenic lines segregating strong and weak alleles of the seed dormancy geneDOG1and the flowering time geneFRI. We synthesized germination phenology data from the first experiment with fitness functions from the second experiment to project population fitness under different seasonal rainfall scenarios.

    Germination phenology tracked rainfall onset but was slower and more variable on sand than on soil. Many seeds dispersed on sand in spring and summer delayed germination until the cooler temperatures of autumn. The high‐dormancyDOG1allele also prevented immediate germination in spring and summer. Germination timing strongly affected plant fitness. Fecundity was highest in the October germination cohort and declined in spring germinants. The late floweringFRIallele had lower fecundity, especially in early fall and spring cohorts. Projections of population fitness revealed that: (1) Later onset of autumn rains will negatively affect population fitness. (2) Slow, variable germination on sand buffers populations against fitness impacts of variable spring and summer rainfall. (3) Seasonal selection favours high dormancy and early flowering genotypes in a Mediterranean climate with hot dry summers. The high‐dormancyDOG1allele delayed germination of spring‐dispersed fresh seeds until more favourable early fall conditions, resulting in higher projected population fitness.

    These findings suggest that Mediterranean annual plant populations are vulnerable to changes in seasonal precipitation, especially in California where rainfall onset is already occurring later. The fitness advantage of highly dormant, early flowering genotypes helps explain the prevalence of this strategy in Mediterranean populations.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  2. Abstract

    Together climate and land‐use change play a crucial role in determining species distribution and abundance, but measuring the simultaneous impacts of these processes on current and future population trajectories is challenging due to time lags, interactive effects and data limitations. Most approaches that relate multiple global change drivers to population changes have been based on occurrence or count data alone.

    We leveraged three long‐term (1995–2019) datasets to develop a coupled integrated population model‐Bayesian population viability analysis (IPM‐BPVA) to project future survival and reproductive success for common loonsGavia immerin northern Wisconsin, USA, by explicitly linking vital rates to changes in climate and land use.

    The winter North Atlantic Oscillation (NAO), a broad‐scale climate index, immediately preceding the breeding season and annual changes in developed land cover within breeding areas both had strongly negative influences on adult survival. Local summer rainfall was negatively related to fecundity, though this relationship was mediated by a lagged interaction with the winter NAO, suggesting a compensatory population‐level response to climate variability.

    We compared population viability under 12 future scenarios of annual land‐use change, precipitation and NAO conditions. Under all scenarios, the loon population was expected to decline, yet the steepest declines were projected under positive NAO trends, as anticipated with ongoing climate change. Thus, loons breeding in the northern United States are likely to remain affected by climatic processes occurring thousands of miles away in the North Atlantic during the non‐breeding period of the annual cycle.

    Our results reveal that climate and land‐use changes are differentially contributing to loon population declines along the southern edge of their breeding range and will continue to do so despite natural compensatory responses. We also demonstrate that concurrent analysis of multiple data types facilitates deeper understanding of the ecological implications of anthropogenic‐induced change occurring at multiple spatial scales. Our modelling approach can be used to project demographic responses of populations to varying environmental conditions while accounting for multiple sources of uncertainty, an increasingly pressing need in the face of unprecedented global change.

     
    more » « less
  3. Synopsis Male mammals of seasonally reproducing species typically have annual testosterone (T) cycles, with T usually peaking during the breeding season, but occurrence of such cycles in male mysticete whales has been difficult to confirm. Baleen, a keratinized filter-feeding apparatus of mysticetes, incorporates hormones as it grows, such that a single baleen plate can record years of endocrine history with sufficient temporal resolution to discern seasonal patterns. We analyzed patterns of T every 2 cm across the full length of baleen plates from nine male bowhead whales (Balaena mysticetus) to investigate occurrence and regularity of T cycles and potential inferences about timing of breeding season, sexual maturation, and reproductive senescence. Baleen specimens ranged from 181–330 cm in length, representing an estimated 11 years (smallest whale) to 22 years (largest whale) of continuous baleen growth, as indicated by annual cycles in stable isotopes. All baleen specimens contained regularly spaced areas of high T content (T peaks) confirmed by time series analysis to be cyclic, with periods matching annual stable isotope cycles of the same individuals. In 8 of the 9 whales, T peaks preceded putative summer isotope peaks by a mean of 2.8 months, suggesting a mating season in late winter / early spring. The only exception to this pattern was the smallest and youngest male, which had T peaks synchronous with isotope peaks. This smallest, youngest whale also did not have T peaks in the first half of the plate, suggesting initiation of T cycling during the period of baleen growth. Linear mixed effect models suggest that whale age influences T concentrations, with the two largest and oldest males exhibiting a dramatic decline in T peak concentration across the period of baleen growth. Overall, these patterns are consistent with onset of sexual maturity in younger males and possible reproductive senescence in older males. We conclude that adult male bowheads undergo annual T cycles, and that analyses of T in baleen may enable investigation of reproductive seasonality, timing of the breeding season, and life history of male whales. 
    more » « less
  4. Abstract

    Climate change can cause changes in expression of organismal traits that influence fitness. In flowering plants, floral traits can respond to drought, and that phenotypic plasticity has the potential to affect pollination and plant reproductive success. Global climate change is leading to earlier snow melt in snow‐dominated ecosystems as well as affecting precipitation during the growing season, but the effects of snow melt timing on floral morphology and rewards remain unknown. We conducted crossed manipulations of spring snow melt timing (early vs. control) and summer monsoon precipitation (addition, control, and reduction) that mimicked recent natural variation, and examined plastic responses in floral traits ofIpomopsis aggregataover 3 years in the Rocky Mountains. We tested whether increased summer precipitation compensated for earlier snow melt, and if plasticity was associated with changes in soil moisture and/or leaf gas exchange. Lower summer precipitation decreased corolla length, style length, corolla width, sepal width, and nectar production, and increased nectar concentration. Earlier snow melt (taking into account natural and experimental variation) had the same effects on those traits and decreased inflorescence height. The effect of reduced summer precipitation was stronger in earlier snow melt years for corolla length and sepal width. Trait reductions were explained by drier soil during the flowering period, but this effect was only partially explained by how drier soils affected plant water stress, as measured by leaf gas exchange. We predicted the effects of plastic trait changes on pollinator visitation rates, pollination success, and seed production using prior studies onI. aggregata. The largest predicted effect of drier soil on relative fitness components via plasticity was a decrease in male fitness caused by reduced pollinator rewards (nectar production). Early snow melt and reduced precipitation are strong drivers of phenotypic plasticity, and both should be considered when predicting effects of climate change on plant traits in snow‐dominated ecosystems.

     
    more » « less
  5. Abstract

    Across taxa, the timing of life‐history events (phenology) is changing in response to warming temperatures. However, little is known about drivers of variation in phenological trends among species.

    We analysed 168 years of museum specimen and sighting data to evaluate the patterns of phenological change in 70 species of solitary bees that varied in three ecological traits: diet breadth (generalist or specialist), seasonality (spring, summer or fall) and nesting location (above‐ground or below‐ground). We estimated changes in onset, median, end and duration of each bee species' annual activity (flight duration) using quantile regression.

    To determine whether ecological traits could explain phenological trends, we compared average trends across species groups that differed in a single trait. We expected that specialist bees would be constrained by their host plants' phenology and would show weaker phenological change than generalist species. We expected phenological advances in spring and delays in summer and fall. Lastly, we expected stronger shifts in above‐ground versus below‐ground nesters.

    Across all species, solitary bees have advanced their phenology by 0.43 days/decade. Since 1970, this advancement has increased fourfold to 1.62 days/decade. Solitary bees have also lengthened their flight period by 0.44 days/decade. Seasonality and nesting location explained variation in trends among species. Spring‐ and summer‐active bees tended to advance their phenology, whereas fall‐active bees tended to delay. Above‐ground nesting species experienced stronger advances than below‐ground nesting bees in spring; however, the opposite was true in summer. Diet breadth was not associated with patterns of phenological change.

    Our study has two key implications. First, an increasing activity period of bees across the flight season means that bee communities will potentially provide pollination services for a longer period of time during the year. And, since phenological trends in solitary bees can be explained by some ecological traits, our study provides insight into mechanisms underpinning population viability of insect pollinators in a changing world.

     
    more » « less