Moving hybrid zones provide compelling examples of evolution in action, yet long‐term studies that test the assumptions of hybrid zone stability are rare. Using replicated transect samples collected over a 10‐year interval from 2002 to 2012, we find evidence for concerted movement of genetic clines in a plateau fence lizard hybrid zone (
Steep genetic clines resulting from recent secondary contact between previously isolated taxa can either gradually erode over time or be stabilized by factors such as ecological selection or selection against hybrids. We used patterns of variation in 30 nuclear and two mitochondrial
- PAR ID:
- 10018216
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology and Evolution
- Volume:
- 6
- Issue:
- 16
- ISSN:
- 2045-7758
- Format(s):
- Medium: X Size: p. 5771-5787
- Size(s):
- p. 5771-5787
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Sceloporus tristichus ) in Arizona. Cline‐fitting analyses ofSNP and mtDNA data both provide evidence that the hybrid zone shifted northward by approximately 2 km during the 10‐year interval. For each sampling period, the mtDNA cline centre is displaced from theSNP cline centre and maintaining an introgression distance of approximately 3 km. The northward expansion of juniper trees into the Little Colorado River Basin in the early 1900s provides a plausible mechanism for hybrid zone formation and movement, and a broadscale quantification of recent land cover change provides support for increased woody species encroachment at the southern end of the hybrid zone. However, population processes can also contribute to hybrid zone movement, and the current stability of the ecotone habitats in the centre of the hybrid zone suggests that movement could decelerate in the future. -
Abstract Introgression might be exceptionally common during the evolution of narrowly endemic species. For instance, in the springs of the small and isolated
C uatroC iénegasV alley, the mitogenome of the cichlid fish could be rapidly introgressing into populations of the trophically polymorphicH erichthys cyanoguttatus . We used a combination of genetic and environmental data to examine the factors associated with this mitochondrial introgression. A reduced representation library of over 6220 single nucleotide polymorphisms (H . minckleyiSNP s) from the nuclear genome showed that mitochondrial introgression into is biased relative to the amount of nuclear introgression.H . minckleyiSNP assignment probabilities also indicated that cichlids with more hybrid ancestry are not more commonly female providing no support for asymmetric backcrossing or hybrid‐induced sex‐ratio distortion in generating the bias in mitochondrial introgression. Smaller effective population size in inferred from theH . minckleyiSNP s coupled with sequences of all 13 mitochondrial proteins suggests that relaxed selection on the mitogenome could be facilitating the introgression of “H. cyanoguttatus ” haplotypes. Additionally, we showed that springs with colder temperatures had greater amounts of mitochondrial introgression fromH. cyanoguttatus . Relaxed selection inH. minckleyi coupled with temperature‐related molecular adaptation could be facilitating mitogenomic introgression intoH. minckleyi . -
Abstract Identification of genes underlying genomic signatures of natural selection is key to understanding adaptation to local conditions. We used targeted resequencing to identify
SNP markers in 5321 candidate adaptive genes associated with known immunological, metabolic and growth functions in ovids and other ungulates. We selectively targeted 8161 exons in protein‐coding and nearby 5′ and 3′ untranslated regions of chosen candidate genes. Targeted sequences were taken from bighorn sheep (Ovis canadensis ) exon capture data and directly from the domestic sheep genome (Ovis aries v. 3; oviAri3). The bighorn sheep sequences used in the Dall's sheep (Ovis dalli dalli ) exon capture aligned to 2350 genes on the oviAri3 genome with an average of 2 exons each. We developed a microfluidic qPCR‐basedSNP chip to genotype 476 Dall's sheep from locations across their range and test for patterns of selection. Using multiple corroborating approaches (lositan andbayescan ), we detected 28SNP loci potentially under selection. We additionally identified candidate loci significantly associated with latitude, longitude, precipitation and temperature, suggesting local environmental adaptation. The three methods demonstrated consistent support for natural selection on nine genes with immune and disease‐regulating functions (e.g. Ovar‐DRA ,APC ,BATF 2,MAGEB 18), cell regulation signalling pathways (e.g.KRIT 1,PI 3K,ORRC 3), and respiratory health (CYSLTR 1). Characterizing adaptive allele distributions from novel genetic techniques will facilitate investigation of the influence of environmental variation on local adaptation of a northern alpine ungulate throughout its range. This research demonstrated the utility of exon capture for gene‐targetedSNP discovery and subsequentSNP chip genotyping using low‐quality samples in a nonmodel species. -
Abstract Effective management of threatened and exploited species requires an understanding of both the genetic connectivity among populations and local adaptation. The Olympia oyster (
Ostrea lurida ), patchily distributed from Baja California to the central coast of Canada, has a long history of population declines due to anthropogenic stressors. For such coastal marine species, population structure could follow a continuous isolation‐by‐distance model, contain regional blocks of genetic similarity separated by barriers to gene flow, or be consistent with a null model of no population structure. To distinguish between these hypotheses inO. lurida , 13,424 single nucleotide polymorphisms (SNP s) were used to characterize rangewide population structure, genetic connectivity, and adaptive divergence. Samples were collected across the species range on the west coast of North America, from southern California to Vancouver Island. A conservative approach for detecting putative loci under selection identified 235SNP s across 129GBS loci, which were functionally annotated and analyzed separately from the remaining neutral loci. While strong population structure was observed on a regional scale in both neutral and outlier markers, neutral markers had greater power to detect fine‐scale structure. Geographic regions of reduced gene flow aligned with known marine biogeographic barriers, such as Cape Mendocino, Monterey Bay, and the currents around Cape Flattery. The outlier loci identified as under putative selection included genes involved in developmental regulation, sensory information processing, energy metabolism, immune response, and muscle contraction. These loci are excellent candidates for future research and may provide targets for genetic monitoring programs. Beyond specific applications for restoration and management of the Olympia oyster, this study lends to the growing body of evidence for both population structure and adaptive differentiation across a range of marine species exhibiting the potential for panmixia. Computational notebooks are available to facilitate reproducibility and future open‐sourced research on the population structure ofO. lurida . -
Abstract Local adaptation and phenotypic plasticity are main mechanisms of organisms’ resilience in changing environments. Both are affected by gene flow and are expected to be weak in zooplankton populations inhabiting large continuous water bodies and strongly affected by currents. Lake Baikal, the deepest and one of the coldest lakes on Earth, experienced epilimnion temperature increase during the last 100 years, exposing Baikal's zooplankton to novel selective pressures. We obtained a partial transcriptome of
Epischura baikalensis (Copepoda: Calanoida), the dominant component of Baikal's zooplankton, and estimatedSNP allele frequencies and transcript abundances in samples from regions of Baikal that differ in multiyear average surface temperatures. The strongest signal in bothSNP and transcript abundance differentiation is theSW ‐NE gradient along the 600+ km long axis of the lake, suggesting isolation by distance.SNP differentiation is stronger for nonsynonymous than synonymousSNP s and is paralleled by differential survival during a laboratory exposure to increased temperature, indicating directional selection operating on the temperature gradient. Transcript abundance, generally collinear with theSNP differentiation, shows samples from the warmest, less deep location clustering together with the southernmost samples. Differential expression is more frequent among transcripts orthologous to candidate thermal response genes previously identified in model arthropods, including genes encoding cytoskeleton proteins, heat‐shock proteins, proteases, enzymes of central energy metabolism, lipid and antioxidant pathways. We conclude that the pivotal endemic zooplankton species in Lake Baikal exists under temperature‐mediated selection and possesses both genetic variation and plasticity to respond to novel temperature‐related environmental pressures.