Barriers such as hydroelectric dams inhibit migratory pathways essential to many aquatic species, resulting in significant losses of species, their unique life-history forms, and genetic diversity. Understanding the impacts of dam removal to species recovery at these different biological levels is crucial to fully understand the restoration response. We used the removal of two large dams on the Elwha River as an opportunity to characterize how restored connectivity impacts the reestablishment of two fish species, Chinook salmon (
Substantial declines of Pacific salmon populations have occurred over the past several decades related to large‐scale anthropogenic and climatic changes in freshwater and marine environments. In the Columbia River Basin, migrating juvenile salmonids may pass as many as eight large‐scale hydropower projects before reaching the ocean; however, the cumulative effects of multiple dam passages are largely unknown. Using acoustic transmitters and an extensive system of hydrophone arrays in the Lower Columbia River, we calculated the survival of yearling Chinook salmon (
- NSF-PAR ID:
- 10018252
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology and Evolution
- Volume:
- 6
- Issue:
- 16
- ISSN:
- 2045-7758
- Format(s):
- Medium: X Size: p. 5881-5892
- Size(s):
- p. 5881-5892
- Sponsoring Org:
- National Science Foundation
More Like this
-
Oncorhynchus tshawytscha ) and Steelhead/rainbow trout (Oncorhynchus mykiss ), and their unique ocean migration return-timing life-history forms. In this study, we employed riverscape genetics to understand how restoration and the environment influence the distribution of neutral and return-timing genetic variation underlying the migratory life-history forms and species at- and between- sampling sites. We genotyped fish sampled over time and space in the Elwha River using Genotyping-in-Thousands by sequencing (GTseq) loci for both species at neutral and putatively adaptive loci in and near the major effect genic regionGREB1L/ROCK1 putatively associated with migration timing. We observed little evidence of genetic structure for either species, but a statistically significant increase in early return-timing alleles in upriverO. mykiss population post-dam removal. ForO. tshawytscha , at-site genetic variation was shaped by river distance and a combination of environmental habitat differences, while between-site genetic variation was mainly shaped by river distance. For allO. mykiss , at- and between-site genetic variation is primarily explained by river distance. Genetic variation in juvenile and adult Steelhead, respectively, were influenced by at- and between-site environmental and habitat differences. Our study illustrates the power of using genetics to understand the implications of both demography and environment in facilitating the recovery of species and their diverse life-history forms following barrier removal. -
null (Ed.)Dam removal is gaining both support and resistance in different communities and political circles in the Pacific Northwest of the United States; given its sensitive environmental and economic consequences. The Columbia River Basin (CRB) offers a unique opportunity to examine to what extent the replacement of hydroelectric dams affects reliability and adequacy of the power system given long-standing proposals to remove the four Lower Snake River dams to improve the survival of the endangered salmon species. Key results show that replacing the four dams leads to an inadequate energy supply necessitating the need for more capacity to satisfy requirements. Although the four dams have higher nameplate capacity, they provide a much lower effective capacity. Thus, the debate about removing dams should be an opportunity for CRB managers to consider investment options in new ecosystem services and energy solutions that maintain adequate performance.more » « less
-
Abstract Many species that undergo long breeding migrations, such as anadromous fishes, face highly heterogeneous environments along their migration corridors and at their spawning sites. These environmental challenges encountered at different life stages may act as strong selective pressures and drive local adaptation. However, the relative influence of environmental conditions along the migration corridor compared with the conditions at spawning sites on driving selection is still unknown. In this study, we performed genome–environment associations (GEA) to understand the relationship between landscape and environmental conditions driving selection in seven populations of the anadromous Chinook salmon (
Oncorhynchus tshawytscha )—a species of important economic, social, cultural, and ecological value—in the Columbia River basin. We extracted environmental variables for the shared migration corridors and at distinct spawning sites for each population, and used a Pool‐seq approach to perform whole genome resequencing. Bayesian and univariate GEA tests with migration‐specific and spawning site‐specific environmental variables indicated many more candidate SNPs associated with environmental conditions at the migration corridor compared with spawning sites. Specifically, temperature, precipitation, terrain roughness, and elevation variables of the migration corridor were the most significant drivers of environmental selection. Additional analyses of neutral loci revealed two distinct clusters representing populations from different geographic regions of the drainage that also exhibit differences in adult migration timing (summer vs. fall). Tests for genomic regions under selection revealed a strong peak on chromosome 28, corresponding to the GREB1L/ROCK1 region that has been identified previously in salmonids as a region associated with adult migration timing. Our results show that environmental variation experienced throughout migration corridors imposed a greater selective pressure on Chinook salmon than environmental conditions at spawning sites. -
Abstract Large dams are a leading cause of river ecosystem degradation. Although dams have cumulative effects as water flows downstream in a river network, most flow alteration research has focused on local impacts of single dams. Here we examined the highly regulated Colorado River Basin (CRB) to understand how flow alteration propagates in river networks, as influenced by the location and characteristics of dams as well as the structure of the river network—including the presence of tributaries. We used a spatial Markov network model informed by 117 upstream‐downstream pairs of monthly flow series (2003–2017) to estimate flow alteration from 84 intermediate‐to‐large dams representing >83% of the total storage in the CRB. Using Least Absolute Shrinkage and Selection Operator regression, we then investigated how flow alteration was influenced by local dam properties (e.g., purpose, storage capacity) and network‐level attributes (e.g., position, upstream cumulative storage). Flow alteration was highly variable across the network, but tended to accumulate downstream and remained high in the main stem. Dam impacts were explained by network‐level attributes (63%) more than by local dam properties (37%), underscoring the need to consider network context when assessing dam impacts. High‐impact dams were often located in sub‐watersheds with high levels of native fish biodiversity, fish imperilment, or species requiring seasonal flows that are no longer present. These three biodiversity dimensions, as well as the amount of dam‐free downstream habitat, indicate potential to restore river ecosystems via controlled flow releases. Our methods are transferrable and could guide screening for dam reoperation in other highly regulated basins.
-
Abstract Dams are often removed from rivers to restore habitat connectivity for biota such as fish. Removal of inland dams is well studied in temperate mainland rivers but this approach has been little studied in fish assemblages in islands, tropic systems, or for dams near the mouth of the river. In Puerto Rico, one of the most intensively dammed territories in the world, all native river fishes migrate between fresh water and the sea, and previous work shows that these movements are impeded or blocked by dams.
Fish assemblages were compared before and after removal of the Cambalache dam, a porous, low‐head structure near the mouth of the Río Grande de Arecibo, as well as in two other rivers in western Puerto Rico, one with a similarly sized and positioned dam, and one reference river without artificial barriers. Fish were sampled using backpack electrofishing on 39 occasions during 2017–2019, including seven samples collected after removal of the Cambalache dam, at four to six sites per river.
Fish assemblages upstream from dams were poorer in species, and species richness showed a marginal tendency (
p = 0.0515) to increase upstream of the Cambalache dam 3 months after its removal. The two small lowland dams studied herein limited the upstream extent of marine species, which recolonised upstream sites of the Río Grande de Arecibo after removal of the Cambalache dam. An estimate of relative density (catch per unit effort) of common native freshwater species was higher above these two dams, and decreased at upstream sites after removal of the Cambalache dam. The estimated relative density of a native freshwater species that is of conservation concern, the American eel (Anguilla rostrata ), was reduced above dams, and increased upstream of the former Cambalache dam after its removal.In extensive surveys conducted previously in Puerto Rico, sampling was concentrated higher in the catchment, and native fishes were more common and abundant below than above dams. The present work was conducted near the river mouth, and opposite results were observed. These contrasting results suggest that the effects of dams (or dam removal) on fish assemblages vary along the river gradient, although data from other systems are needed to confirm this.
The present results suggest low‐head dam removal to be a viable method of restoring connectivity in fish assemblages in lower reaches of rivers in Puerto Rico and, potentially, other tropical islands. Removal of dams near the mouth of the river appears to be of particular benefit to marine fish species that use lower river reaches.