skip to main content


Title: Stable isotopes in bivalves as indicators of nutrient source in coastal waters in the Bocas del Toro Archipelago, Panama

To examine N-isotope ratios (15N/14N) in tissues and shell organic matrix of bivalves as a proxy for natural and anthropogenic nutrient fluxes in coastal environments,Pinctada imbricata,Isognomon alatus, andBrachidontes exustusbivalves were live-collected and analyzed from eight sites in Bocas del Toro, Panama. Sites represent a variety of coastal environments, including more urbanized, uninhabited, riverine, and oceanic sites. Growth under differing environmental conditions is confirmed byδ18O values, with open ocean Escudo de Veraguas shells yielding the highest averageδ18O (−1.0‰) value and freshwater endmember Rio Guarumo the lowest (−1.7‰). At all sites there is no single dominant source of organic matter contributing to bivalveδ15N andδ13C values. Bivalveδ15N andδ13C values likely represent a mixture of mangrove and seagrass N and C, although terrestrial sources cannot be ruled out. Despite hydrographic differences between end-members, we see minimalδ15N andδ13C difference between bivalves from the river-influenced Rio Guarumo site and those from the oceanic Escudo de Veraguas site, with no evidence for N from open-ocean phytoplankton in the latter. Populated sites yield relative15N enrichments suggestive of anthropogenic nutrient input, but lowδ15N values overall make this interpretation equivocal. Lastly,δ15N values of tissue and shell organic matrix correlate significantly for pterioideansP. imbricataandI. alatus. Thus for these species, N isotope studies of historical and fossil shells should provide records of ecology of past environments.

 
more » « less
NSF-PAR ID:
10018353
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
PeerJ
Date Published:
Journal Name:
PeerJ
Volume:
4
ISSN:
2167-8359
Page Range / eLocation ID:
Article No. e2278
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Rationale

    The use of secondary ion mass spectrometry (SIMS) to perform micrometer‐scalein situcarbon isotope (δ13C) analyses of shells of marine microfossils called planktic foraminifers holds promise to explore calcification and ecological processes. The potential of this technique, however, cannot be realized without comparison to traditional whole‐shell δ13C values measured by gas source mass spectrometry (GSMS).

    Methods

    Paired SIMS and GSMS δ13C values measured from final chamber fragments of the same shell of the planktic foraminiferOrbulina universaare compared. The SIMS–GSMS δ13C differences (Δ13CSIMS‐GSMS) were determined via paired analysis of hydrogen peroxide‐cleaned fragments of modern cultured specimens and of fossil specimens from deep‐sea sediments that were either untreated, sonicated, and cleaned with hydrogen peroxide or vacuum roasted. After treatment, fragments were analyzed by a CAMECA IMS 1280 SIMS instrument and either a ThermoScientific MAT‐253 or a Fisons Optima isotope ratio mass spectrometer (GSMS).

    Results

    Paired analyses of cleaned fragments of cultured specimens (n = 7) yield no SIMS–GSMS δ13C difference. However, paired analyses of untreated (n = 18) and cleaned (n = 12) fragments of fossil shells yield average Δ13CSIMS‐GSMSvalues of 0.8‰ and 0.6‰ (±0.2‰, 2 SE), respectively, while vacuum roasting of fossil shell fragments (n = 11) removes the SIMS–GSMS δ13C difference.

    Conclusions

    The noted Δ13CSIMS‐GSMSvalues are most likely due to matrix effects causing sample–standard mismatch for SIMS analyses but may also be a combination of other factors such as SIMS measurement of chemically bound water. The volume of material analyzed via SIMS is ~105times smaller than that analyzed by GSMS; hence, the extent to which these Δ13CSIMS‐GSMSvalues represent differences in analyte or instrument factors remains unclear.

     
    more » « less
  2. Abstract

    Stable isotope data from tests of four planktonic foraminifer species in core tops on the Rio Grande Rise (RIO) fail a field test of reproducibility until corrections are made for various environmental effects. The regionally uniform and strongly stratified surface ocean hydrography across RIO allows the identification of causes of variability in δ18O and δ13C data in addition to the effects of surface ocean temperature and nutrient content. A previously calibrated calcite dissolution proxy indicates that the dissolution of foraminifer shells in sediments has no effect on δ18O and δ13C in tests of foraminifers from core tops on RIO. Furthermore, vital effects within and among foraminifer species are not sufficient to explain the large variability of δ18O and δ13C data observed on RIO. Instead, correctly estimating species‐specific habitat depth ranges and adjusting δ13C values for ocean/atmosphere carbon exchange are necessary to accurately reconstruct the hydrography of surface waters on RIO.

     
    more » « less
  3. Abstract

    Marine resource subsidies alter consumer dynamics of recipient populations in coastal systems. The response to these subsidies by generalist consumers is often not uniform, creating inter- and intrapopulation diet variation and niche diversification that may be intensified across heterogeneous landscapes. We sampled western fence lizards,Sceloporus occidentalis, from Puget Sound beaches and coastal and inland forest habitats, in addition to the lizards’ marine and terrestrial prey items to quantify marine and terrestrial resource use with stable isotope analysis and mixing models. Beach lizards had higher average δ13C and δ15N values compared to coastal and inland forest lizards, exhibiting a strong mixing line between marine and terrestrial prey items. Across five beach sites, lizard populations received 20–51% of their diet from marine resources, on average, with individual lizards ranging between 7 and 86% marine diet. The hillslope of the transition zone between marine and terrestrial environments at beach sites was positively associated with marine-based diets, as the steepest sloped beach sites had the highest percent marine diets. Within-beach variation in transition zone slope was positively correlated with the isotopic niche space of beach lizard populations. These results demonstrate that physiography of transitional landscapes can mediate resource flow between environments, and variable habitat topography promotes niche diversification within lizard populations. Marine resource subsidization of Puget Sound beachS. occidentalispopulations may facilitate occupation of the northwesternmost edge of the species range. Shoreline restoration and driftwood beach habitat conservation are important to support the unique ecology of Puget SoundS. occidentalis.

     
    more » « less
  4. Abstract

    The Paleocene‐Eocene Thermal Maximum (PETM; 56 Ma) is considered to be one of the best analogs for future climate change. The carbon isotope composition (δ13C) ofn‐alkanes derived from leaf waxes of terrestrial plants and marine algae can provide important insights into the carbon cycle perturbation during the PETM. Here, we present new organic geochemical data and compound‐specific δ13C data from sediments recovered from an early Cenozoic basin‐margin succession from Spitsbergen. These samples represent one of the most expanded PETM sites and provide new insights into the high Arctic response to the PETM. Our results reveal a synchronous ∼−6.5‰ carbon isotope excursion (CIE) in short‐chainn‐alkanes (nC19; marine algae/bacteria) with a ∼−5‰ CIE in long‐chainn‐alkanes (nC29andnC31; plant waxes) during the peak of the PETM. Although δ13Cn‐alkanesvalues were potentially affected via a modest thermal effect (1‰–2‰), the relative changes in the δ13Cn‐alkanesremain robust. A simple carbon cycle modeling suggests peak carbon emission rate could be ∼3 times faster than previously suggested using δ13CTOCrecords. The CIE magnitude of both δ13Cn‐C19and δ13Cn‐C29can be explained by the elevated influence of13C‐depleted respired CO2in the water column and increased water availability on land, elevatedpCO2in the atmosphere, and changes in vegetation type during the PETM. The synchronous decline in δ13C of both leaf waxes and marine algae/bacteria argues against a significant contribution to the sedimentary organic carbon pool from the weathering delivery of fossiln‐alkanes in the Arctic region.

     
    more » « less
  5. Rationale

    Nitrogen stable isotope ratio (δ15N) processes are not well described in reptiles, which limits reliable inference of trophic and nutrient dynamics. In this study we detailed δ15N turnover and discrimination (Δ15N) in diverse tissues of two lizard species, and compared these results with previously published carbon data (δ13C) to inform estimates of reptilian foraging ecology and nutrient physiology.

    Methods

    We quantified15N incorporation and discrimination dynamics over 360 days in blood fractions, skin, muscle, and liver ofSceloporus undulatusandCrotaphytus collaristhat differed in body mass. Tissue samples were analyzed on a continuous flow isotope ratio mass spectrometer.

    Results

    Δ15N for plasma and red blood cells (RBCs) ranged between +2.7 and +3.5‰; however, skin, muscle, and liver did not equilibrate, hindering estimates for these somatic tissues.15N turnover in plasma and RBCs ranged from 20.7 ± 4 to 303 ± 166 days among both species. Comparison with previously published δ13C results for these same samples showed that15N and13C incorporation patterns were uncoupled, especially during winter when hibernation physiology could have played a role.

    Conclusions

    Our results provide estimates of15N turnover rates and discrimination values that are essential to using and interpreting isotopes in studies of diet reconstruction, nutrient allocation, and trophic characterization in reptiles. These results also suggest that somatic tissues can be unreliable, while life history shifts in nutrient routing and metabolism potentially cause15N and13C dynamics to be decoupled.

     
    more » « less