Espoused Faculty Epistemologies for Engineering Mathematics: Towards Defining “Mathematical Maturity” for Engineering
- Award ID(s):
- 1544388
- PAR ID:
- 10018508
- Date Published:
- Journal Name:
- Proceedings of the 2016 American Society for Engineering Education Annual Conference and Exposition
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
This empirical research full paper describes a project aimed at increasing graduation rates among low-income, academically talented engineering students by implementing first-year student initiatives. The project, supported by an NSF-SSTEM (National Science Foundation Scholarships in Science, Technology, Engineering and Mathematics) grant at a Northeastern US institution, is in its second year of a four-year plan. Grounded in Tinto’s conceptual model of student motivation and persistence, the project emphasizes early interventions, which are critical for low-income students facing external challenges that may impact their decision to stay in college or enter the workforce. We developed and integrated the SSTEM project aiming to increase four key elements, which based on Tinto will also increase persistence. The SSTEM project includes scholarships, an Engineering Learning Community (ELC) that promotes cohort-based learning and living, mentorship, and participation in personal and professional development seminars. Additionally, inclusive practices have been integrated into first-year engineering lab courses to improve curriculum accessibility. This paper evaluates the validity of an instrument designed to assess the project's impact on students’ college experiences and persistence. It builds on prior exploratory factor analysis (EFA) research by presenting confirmatory factor analysis (CFA) findings to further validate the instrument.more » « less
-
The California Community College system plays an important role in providing affordable and accessible education to diverse student populations by allowing them to complete all of their lower-division course work and then transfer to a four-year institution to complete a bachelor’s degree. However, the increasing divergence of the lower-division requirements among different four-year institutions and among the different fields of engineering, coupled with decreasing enrollments and resources, has forced many community colleges to cancel low-enrollment classes and high-cost programs including those in engineering. To address this issue, four community colleges in the San Francisco Bay Area developed an innovative program titled Creating Alternative Learning Strategies for Transfer Engineering Programs (CALSTEP). Funded by the National Science Foundation through the Improving Undergraduate STEM Education (IUSE) program, CALSTEP aims to enable small-to-medium community college engineering programs to support a comprehensive set of lower-division engineering courses that are delivered either completely online, or with limited face-to-face interactions. In addition to developing and implementing curriculum materials and resources for the core lower-division engineering courses, one of the main components of CALSTEP is disseminating the curriculum widely in California community college engineering programs. This is done through the Summer Engineering Teaching Institute, which is a two-day teaching workshop that introduces community college engineering faculty to the CALSTEP curriculum, and assists faculty in implementing the curriculum and developing alternative teaching and learning strategies to increase enrollment and improve teaching effectiveness. Results of curriculum development and the implementation of the Summer Engineering Teaching Institute will be highlighted in this paper, as well as future plans to maximize the impact of the program in increasing access to engineering education among thousands of community college engineering students and strengthening engineering transfer programs in the state.more » « less
-
This paper reports on a scholarship program funded by the National Science Foundation that focuses on students who transfer at the 3rd-year level from 2-year schools to the engineering and engineering technology BS programs at our university. The objectives of the program are to: (i) expand and diversify the engineering/technology workforce of the future, (ii) develop linkages and articulations with 2-year schools and their S-STEM (Scholarships in Science, Technology, Engineering and Mathematics) programs, (iii) provide increased career opportunities and job placement rates through mandatory paid co-op experiences, and (iv) serve as a model for other universities to provide vertical transfer students access to the baccalaureate degree. The program is in its third year. It recruited its first group of 25 students in Fall 2017, and another group of 27 students in Fall 2018. We hope to recruit 26 more students in Fall 2019 for a total of 78 vertical transfers. The goal is to retain and graduate at least 95% of these scholars. To enhance the success of these scholars, a zero-credit six-week orientation course was developed in Fall 2017 focusing on four dimensions of student wellness: academic, financial, social, and personal. This paper describes the development of this course, its content, and the modifications that were made to the course for Fall 2018. The paper will also address the research conducted in order to generate knowledge about the program elements that will be essential for the success of vertical transfer programs at other universities. Two research instruments are described: an online survey and a focus group interview that were developed, and administered to the transfer scholars in their first year. Initial findings concerning students’ experiences at their 2-year schools, their reason for transferring, their experience in transferring as well as their initial conceptions of what life at a 4-year institution will be like are presented.more » « less
An official website of the United States government

