skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Accelerating t 1ρ cartilage imaging using compressed sensing with iterative locally adapted support detection and JSENSE: Fast T 1ρ Cartilage Imaging
Award ID(s):
1265612
PAR ID:
10018748
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Magnetic Resonance in Medicine
Volume:
75
Issue:
4
ISSN:
0740-3194
Page Range / eLocation ID:
1617 to 1629
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Millions of people a year receive magnetic resonance imaging (MRI) contrast agents for the diagnosis of conditions as diverse as fatty liver disease and cancer. Gadolinium chelates, which provide preferredT1contrast, are the current standard but face an uncertain future due to increasing concerns about their nephrogenic toxicity as well as poor performance in high‐field MRI scanners. Gadolinium‐containing nanocrystals are interesting alternatives as they bypass the kidneys and can offer the possibility of both intracellular accumulation and active targeting. Nanocrystal contrast performance is notably limited, however, as their organic coatings block water from close interactions with surface Gadoliniums. Here, these steric barriers to water exchange are minimized through shape engineering of plate‐like nanocrystals that possess accessible Gadoliniums at their edges. Sulfonated surface polymers promote second‐sphere relaxation processes that contribute remarkable contrast even at the highest fields (r1= 32.6 × 10−3mGd−1s−1at 9.4 T). These noncytotoxic materials release no detectable free Gadolinium even under mild acidic conditions. They preferentially accumulate in the liver of mice with a circulation half‐life 50% longer than commercial agents. These features allow theseT1MRI contrast agents to be applied for the first time to the ex vivo detection of nonalcoholic fatty liver disease in mice. 
    more » « less
  2. Kim, Philip (Ed.)
    Crystalline two-dimensional (2D) superconductors (SCs) with low carrier density are an exciting new class of materials in which electrostatic gating can tune superconductivity, electronic interactions play a prominent role, and electrical transport properties may directly reflect the topology of the Fermi surface. Here, we report the dramatic enhancement of superconductivity with decreasing thickness in semimetallic Td-MoTe2, with critical temperature (Tc) increasing up to 7.6 K for monolayers, a 60-fold increase with respect to the bulk Tc. We show that monolayers possess a similar electronic structure and density of states (DOS) as the bulk, implying that electronic interactions play a strong role in the enhanced superconductivity. Reflecting the low carrier density, the critical temperature, magnetic field, and current density are all tunable by an applied gate voltage. The response to high in-plane magnetic fields is distinct from that of other 2D SCs and reflects the canted spin texture of the electron pockets. 
    more » « less