skip to main content


Title: Micromachined silicon acoustic delay line with 3D-printed micro linkers and tapered input for improved structural stability and acoustic directivity
NSF-PAR ID:
10018841
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Micromechanics and Microengineering
Volume:
26
Issue:
10
ISSN:
0960-1317
Page Range / eLocation ID:
105003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent studies have shown that reconfigurable acoustic arrays inspired from rigid origami structures can be used to radiate and focus acoustic waves. Yet, there is a need for exploration of single-degree-of-freedom deployment to be integrated with such arrays for sake of tailoring wave focusing. This research explores a reconfigurable acoustic array inspired from a regular Miura-ori unit cell and threefold-symmetric Bricard linkage. The system focuses on acoustic waves and has single-degree-of-freedom motion when incorporated with a modified threefold-symmetric Bricard linkage. Three configurations of the array are analyzed where array facets that converge towards the center axis are considered to vibrate like baffled pistons and generate acoustic waves into the surrounding fluid. An analytical model is constructed to explore the near-field acoustic focusing behavior of the proposed acoustic array. The wave focusing capabilities of the array are verified through proof-of-principle experiments. The results show that the wave focusing of the array is influenced by the geometric parameters of the facets and the relative distance of facets to the center axis, in agreement with simplified ray acoustics estimates. These findings underscore the fundamental relationship between focusing sound radiators and geometric acoustics principles. The results encourage broader exploration of acoustic array designs inspired from integrated single-degree-of-freedom linkages and origami structures for sake of straightforward array deployment and reconfiguration. 
    more » « less
  2. null (Ed.)
    A novel structural damage detection methodology that relies on the detectability of the changes in acoustic transmissibility across boundaries of structural cavities is investigated. The approach focuses on active damage detection by leveraging the acoustic pressure responses measured external to structural cavities while exposed to internal acoustic excitations. The active damage detection concept is first demonstrated on a 4 m wind turbine blade using acoustic beamforming techniques to confirm that the acoustic energy transmitted through a damaged surface increases local to the damage compared to an undamaged surface. The concept is further verified, only considering acoustic pressure responses measured from limited microphones positioned at various distances from a ~46 m wind turbine blade. A comprehensive testing campaign is developed and executed on the utility-scale blade considering various damage types, severity levels, and locations. The data are analyzed using a combination of spectral analysis and statistics-based metrics to detect and track the progression of damage as well as identify trends across the test variables. Overall, large increases in the power spectral density were observed from the pressure responses measured external to the structure in most cases. The spectral differences increased as the damage became more severe and damage as small as 5.1 cm in length was easily detected from multiple sensors up to 17.1 m from the damage location. Damage was easily detected when implemented before the mid-length of the blade using simple signal processing algorithms and preliminary test configurations. The data acquired in this work serve as a preliminary investigation into the capability of the approach on complex structures and paves the path for future research into the signal processing techniques and test configurations that will enhance the performance of the active acoustic damage detection approach. 
    more » « less
  3. null (Ed.)
    Cavities with different geometries represent the internal volumes of various engineering applications such as cabins of passenger cars, fuselages and wings of aircraft, and internal compartments of wind turbine blades. Transmissibility of acoustic excitation to and from these cavities is affected by material and cross-sectional properties of the structural cavity, as well as potential damage incurred. A new structural damage detection methodology that relies on the detectability of the changes in acoustic transmissibility across the boundaries of structural cavities is proposed. The methodology is described with a specific focus on the passive damage detection approach applied to cavity internal acoustic pressure responses under external flow-induced acoustic excitations. The approach is realized through a test plan that considers a wind turbine blade section subject to various damage types, severity levels, and locations, as well as wind speeds tested in a subsonic wind tunnel. A number of statistics-based metrics, including power spectral density estimates, band power differences from a known baseline, and the sum of absolute difference, were used to detect damage. The results obtained from the test campaign indicated that the passive acoustic damage detection approach was able to detect all considered hole-type damages as small as 0.32 cm in diameter and crack-type damages 1.27 cm in length. In general, the ability to distinguish damage from the baseline state improved as the damage increased in severity. Damage type, damage location, and flow speed influenced the ability to detect damage, but were not significant enough to prevent detection. This article serves as an overall proof of concept of the passive-based damage detection approach using flow-induced acoustic excitations on structural cavities of a wind turbine blade. The laboratory-scale results reveal that acoustic-based monitoring has great potential to be used as a new structural health monitoring technique for utility-scale wind turbine blades. 
    more » « less
  4. Airgun source systems generate low frequency underwater sound used in reflection and refraction seismology for mapping ocean bottom stratigraphy with important applications in ocean geosciences, such as understanding plate tectonics, ascertaining ocean geological history and climate change, and offshore hydrocarbon prospecting. Seismo-acoustic airgun signals from geophysical surveying activity were recorded at very long ranges, spanning roughly 175-195 km, on a large-aperture densely-populated linear coherent hydrophone array in the Norwegian Sea during Spring 2014. Off the coast of Alesund, airgun signals were detected with 8 s inter-pulse intervals for 3 to 24 hour time periods per day over the 4 days of hydrophone array operation in that region. Here we provide a time-frequency characterization and bearing-time estimation of the received airgun pulses. By correcting for transmission losses in the range- and depth-dependent Norwegian Sea environment, we estimate the source level distribution back projected to a distance of 1 m from the airgun source system. This back-projected source level distribution is then applied to model the Probability of Detection (PoD) region for the airgun signals with the coherent hydrophone array as the receiver in the Norwegian Sea employing the passive ocean acoustic waveguide remote sensing (POAWRS) technique. The estimates of back-projected source level distribution and PoD region provide an understanding of the horizontal spatial propagation extent of the signals from the airgun source system in the shallow and deep water regions of the Norwegian Sea. These results can also be applied to studies of the potential impact of airgun signals on marine organisms. 
    more » « less