skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bi-directional actions of dehydroepiandrosterone and aggression in female Siberian hamsters: DHEA AND FEMALE AGGRESSION
Award ID(s):
1406063
PAR ID:
10019066
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Experimental Zoology Part A: Ecological Genetics and Physiology
Volume:
325
Issue:
2
ISSN:
1932-5223
Page Range / eLocation ID:
116 to 121
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Seasonal plasticity in aggression is likely to be shaped by the contexts in which aggression is beneficial, as well as the constraints inherent in its underlying mechanisms. In males, seasonal plasticity in testosterone (T) secretion is thought to underlie seasonal plasticity in conspecific aggression, but it is less clear how and why female aggression may vary across different breeding stages. Here, we integrate functional and mechanistic perspectives to begin to explore seasonal patterns of conspecific aggression in female tree swallows (Tachycineta bicolor), a songbird with intense female–female competition and T‐mediated aggression. Female tree swallows elevate T levels during early breeding stages, coinciding with competition for nest boxes, after which time T levels are roughly halved. However, females need to defend ownership of their nesting territory throughout the breeding season, suggesting it may be adaptive to maintain aggressive capabilities, despite low T levels. We performed simulated territorial intrusions using 3D‐printed decoys of female tree swallows to determine how their aggressive response to a simulated intrusion changes across the breeding season. First, we found that 3D‐printed decoys produce data comparable to stage‐matched studies using live decoys, providing researchers with a new, more economical method of decoy construction. Further, female aggressiveness remained relatively high through incubation, a period of time when T levels are quite low, suggesting that other mechanisms may regulate conspecific female aggression during parental periods. By showing that seasonal patterns of female aggression do not mirror the established patterns of T levels in this highly competitive bird, our findings provide a unique glimpse into how behavioural mechanisms and functions may interact across breeding stages to regulate plasticity. 
    more » « less