skip to main content


Title: Generation Ramping Valuation in Day-Ahead Electricity Markets
In this paper, we first introduce a variational formulation of the Unit Commitment (UC) problem, in which generation and ramping trajectories of the generating units are continuous time signals and the generating units cost depends on the three signals: the binary commitment status of the units as well as their continuous-time generation and ramping trajectories. We assume such bids are piecewise strictly convex time-varying linear functions of these three variables. Based on this problem derive a tractable approximation by constraining the commitment trajectories to switch in a discrete and finite set of points and representing the trajectories in the function space of piece-wise polynomial functions within the intervals, whose discrete coefficients are then the UC problem decision variables. Our judicious choice of the signal space allows us to represent cost and constraints as linear functions of such coefficients, thus, our UC models preserves the MILP formulation of the UC problem. Numerical simulation over real load data from the California ISO demonstrate that the proposed UC model reduces the total dayahead and real-time operation cost, and the number of ramping scarcity events in the real-time operations.  more » « less
Award ID(s):
1549924
NSF-PAR ID:
10019539
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2016 49th Hawaii International Conference on System Sciences (HICSS)
Page Range / eLocation ID:
2335 to 2344
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The current practice of discrete-time electricity pricing starts to fall short in providing an accurate economic signal reflecting the continuous-time variations of load and generation schedule in power systems. This paper introduces the fundamental mathematical theory of continuous-time marginal electricity pricing. We first formulate the continuous-time unit commitment (UC) problem as a constrained variational problem, and subsequently define the continuous-time economic dispatch (ED) problem where the binary commitment variables are fixed to their optimal values. We then prove that the continuous-time marginal electricity price equals to the Lagrange multiplier of the variational power balance constraint in the continuous-time ED problem. The proposed continuous-time marginal price is not only dependent to the incremental generation cost rate, but also to the incremental ramping cost rate of the units, thus embedding the ramping costs in calculation of the marginal electricity price. The numerical results demonstrate that the continuous-time marginal price manifests the behavior of the constantly varying load and generation schedule in power systems. 
    more » « less
  2. Embedding properties of network realizations of dissipative reduced order models Jörn Zimmerling, Mikhail Zaslavsky,Rob Remis, Shasri Moskow, Alexander Mamonov, Murthy Guddati, Vladimir Druskin, and Liliana Borcea Mathematical Sciences Department, Worcester Polytechnic Institute https://www.wpi.edu/people/vdruskin Abstract Realizations of reduced order models of passive SISO or MIMO LTI problems can be transformed to tridiagonal and block-tridiagonal forms, respectively, via dierent modications of the Lanczos algorithm. Generally, such realizations can be interpreted as ladder resistor-capacitor-inductor (RCL) networks. They gave rise to network syntheses in the rst half of the 20th century that was at the base of modern electronics design and consecutively to MOR that tremendously impacted many areas of engineering (electrical, mechanical, aerospace, etc.) by enabling ecient compression of the underlining dynamical systems. In his seminal 1950s works Krein realized that in addition to their compressing properties, network realizations can be used to embed the data back into the state space of the underlying continuum problems. In more recent works of the authors Krein's ideas gave rise to so-called nite-dierence Gaussian quadrature rules (FDGQR), allowing to approximately map the ROM state-space representation to its full order continuum counterpart on a judicially chosen grid. Thus, the state variables can be accessed directly from the transfer function without solving the full problem and even explicit knowledge of the PDE coecients in the interior, i.e., the FDGQR directly learns" the problem from its transfer function. This embedding property found applications in PDE solvers, inverse problems and unsupervised machine learning. Here we show a generalization of this approach to dissipative PDE problems, e.g., electromagnetic and acoustic wave propagation in lossy dispersive media. Potential applications include solution of inverse scattering problems in dispersive media, such as seismic exploration, radars and sonars. To x the idea, we consider a passive irreducible SISO ROM fn(s) = Xn j=1 yi s + σj , (62) assuming that all complex terms in (62) come in conjugate pairs. We will seek ladder realization of (62) as rjuj + vj − vj−1 = −shˆjuj , uj+1 − uj + ˆrj vj = −shj vj , (63) for j = 0, . . . , n with boundary conditions un+1 = 0, v1 = −1, and 4n real parameters hi, hˆi, ri and rˆi, i = 1, . . . , n, that can be considered, respectively, as the equivalent discrete inductances, capacitors and also primary and dual conductors. Alternatively, they can be viewed as respectively masses, spring stiness, primary and dual dampers of a mechanical string. Reordering variables would bring (63) into tridiagonal form, so from the spectral measure given by (62 ) the coecients of (63) can be obtained via a non-symmetric Lanczos algorithm written in J-symmetric form and fn(s) can be equivalently computed as fn(s) = u1. The cases considered in the original FDGQR correspond to either (i) real y, θ or (ii) real y and imaginary θ. Both cases are covered by the Stieltjes theorem, that yields in case (i) real positive h, hˆ and trivial r, rˆ, and in case (ii) real positive h,r and trivial hˆ,rˆ. This result allowed us a simple interpretation of (62) as the staggered nite-dierence approximation of the underlying PDE problem [2]. For PDEs in more than one variables (including topologically rich data-manifolds), a nite-dierence interpretation is obtained via a MIMO extensions in block form, e.g., [4, 3]. The main diculty of extending this approach to general passive problems is that the Stieltjes theory is no longer applicable. Moreover, the tridiagonal realization of a passive ROM transfer function (62) via the ladder network (63) cannot always be obtained in port-Hamiltonian form, i.e., the equivalent primary and dual conductors may change sign [1]. 100 Embedding of the Stieltjes problems, e.g., the case (i) was done by mapping h and hˆ into values of acoustic (or electromagnetic) impedance at grid cells, that required a special coordinate stretching (known as travel time coordinate transform) for continuous problems. Likewise, to circumvent possible non-positivity of conductors for the non-Stieltjes case, we introduce an additional complex s-dependent coordinate stretching, vanishing as s → ∞ [1]. This stretching applied in the discrete setting induces a diagonal factorization, removes oscillating coecients, and leads to an accurate embedding for moderate variations of the coecients of the continuum problems, i.e., it maps discrete coecients onto the values of their continuum counterparts. Not only does this embedding yields an approximate linear algebraic algorithm for the solution of the inverse problems for dissipative PDEs, it also leads to new insight into the properties of their ROM realizations. We will also discuss another approach to embedding, based on Krein-Nudelman theory [5], that results in special data-driven adaptive grids. References [1] Borcea, Liliana and Druskin, Vladimir and Zimmerling, Jörn, A reduced order model approach to inverse scattering in lossy layered media, Journal of Scientic Computing, V. 89, N1, pp. 136,2021 [2] Druskin, Vladimir and Knizhnerman, Leonid, Gaussian spectral rules for the three-point second dierences: I. A two-point positive denite problem in a semi-innite domain, SIAM Journal on Numerical Analysis, V. 37, N 2, pp.403422, 1999 [3] Druskin, Vladimir and Mamonov, Alexander V and Zaslavsky, Mikhail, Distance preserving model order reduction of graph-Laplacians and cluster analysis, Druskin, Vladimir and Mamonov, Alexander V and Zaslavsky, Mikhail, Journal of Scientic Computing, V. 90, N 1, pp 130, 2022 [4] Druskin, Vladimir and Moskow, Shari and Zaslavsky, Mikhail LippmannSchwingerLanczos algorithm for inverse scattering problems, Inverse Problems, V. 37, N. 7, 2021, [5] Mark Adolfovich Nudelman The Krein String and Characteristic Functions of Maximal Dissipative Operators, Journal of Mathematical Sciences, 2004, V 124, pp 49184934 Go back to Plenary Speakers Go back to Speakers Go back 
    more » « less
  3. null (Ed.)
    Sub-hourly Unit Commitment (UC) problems have been suggested as a way to improve power system efficiency. Such problems, however, are much more difficult than hourly UC problems. This is not just because of the increased number of period to consider, but also because of much reduced unit ramping capabilities leading to more complicated convex hulls. As a result, state-of-the-art and practice methods such as branch-and-cut suffer from poor performance. In this paper, our recent Surrogate Absolute-Value Lagrangian Relaxation (SAVLR) method, which overcame major difficulties of standard Lagrangian Relaxation, is enhanced by synergistically incorporating the concept of Ordinal Optimization (OO). By using OO, solving subproblems becomes much faster. Testing of Midcontinent ISO (MISO)’s problem with 15 minutes as the time interval over 36 hours involving about 1,100 units and 15000 virtuals demonstrates that the new method obtains near-optimal solutions efficiently and significantly outperforms branch-and-cut. 
    more » « less
  4. Spatial optimization problems (SOPs) are characterized by spatial relationships governing the decision variables, objectives, and/or constraint functions. In this article, we focus on a specific type of SOP called spatial partitioning, which is a combinatorial problem due to the presence of discrete spatial units. Exact optimization methods do not scale with the size of the problem, especially within practicable time limits. This motivated us to develop population-based metaheuristics for solving such SOPs. However, the search operators employed by these population-based methods are mostly designed for real-parameter continuous optimization problems. For adapting these methods to SOPs, we apply domain knowledge in designing spatially aware search operators for efficiently searching through the discrete search space while preserving the spatial constraints. To this end, we put forward a simple yet effective algorithm called s warm-based s p atial meme ti c al gorithm (SPATIAL) and test it on the school (re)districting problem. Detailed experimental investigations are performed on real-world datasets to evaluate the performance of SPATIAL. Besides, ablation studies are performed to understand the role of the individual components of SPATIAL. Additionally, we discuss how SPATIAL is helpful in the real-life planning process and its applicability to different scenarios and motivate future research directions. 
    more » « less
  5. Unit Commitment is usually formulated as a Mixed Binary Linear Programming (MBLP) problem. When considering a large number of units, state-of-the-art methods such as branch-and-cut may experience difficulties. To address this, an important but much overlooked direction is formulation transformation since if the problem constraints can be transformed to directly delineate the convex hull in the data pre-processing stage, then a solution can be obtained by using linear programming methods without combinatorial difficulties. In the literature, a few tightened formulations for single units with constant ramp rates were reported without presenting how they were derived. In this paper, a systematic approach is developed to tighten formulations in the data pre-processing stage. The idea is to derive vertices of the convex hull without binary requirements. From them, vertices of the original convex hull can be innovatively obtained. These vertices are converted to tightened constraints, which are then parameterized based on unit parameters for general use, tremendously reducing online computational requirements. By analyzing short-time horizons, e.g., two or three hours, tightened formulations for single units with constant and generation-dependent ramp rates are obtained, beyond what is in the literature. Results demonstrate computational efficiency and solution quality benefits of formulation tightening. 
    more » « less