Rapid anthropogenic land use change threatens the primary habitat of the Chestnut short-tailed bat (
Vestimentiferan tubeworms are some of the most recognizable fauna found at deep-sea cold seeps, isolated environments where hydrocarbon rich fluids fuel biological communities. Several studies have investigated tubeworm population structure; however, much is still unknown about larval dispersal patterns at Gulf of Mexico (GoM) seeps. As such, researchers have applied microsatellite markers as a measure for documenting the transport of vestimentiferan individuals. In the present study, we investigate the utility of microsatellites to be cross-amplified within the escarpiid clade of seep vestimentiferans, by determining if loci originally developed for
Seventy-seven
Microsatellite pre-screening identified 13 (27%) of the
The ability to develop “universal” microsatellites reduces the costs associated with these analyses and allows researchers to track and investigate a wider array of taxa, which is particularly useful for organisms living at inaccessible locations such as the deep sea. Our study highlights that non-species specific microsatellites can be amplified across large evolutionary distances and still yield similar findings as species-specific loci. Further, these results show that
- Publication Date:
- NSF-PAR ID:
- 10020127
- Journal Name:
- PeerJ
- Volume:
- 4
- Page Range or eLocation-ID:
- Article No. e2366
- ISSN:
- 2167-8359
- Publisher:
- PeerJ
- Sponsoring Org:
- National Science Foundation
More Like this
-
Carollia castanea ) throughout much of its range. Information on population genetic structure can inform management strategies for this widespread frugivorous bat, and effective protection ofC. castanea will also benefit the more than 20 mutualistic plant species of which this bat is the primary seed disperser. To facilitate understanding of population genetic structure in this species, fourteen novel microsatellite markers were developed using restriction-site-associated DNA libraries and Illumina sequencing and tested on 28 individuals from 13 locations in Costa Rica. These are the first microsatellite markers developed forC. castanea . All loci were polymorphic, with number of alleles ranging from 2–11 and average observed heterozygosity of 0.631. Markers were also cross-amplified in three additional frugivorous bat species threatened by habitat loss and fragmentation: Sowell’s short-tailed bat (Carollia sowelli ), Seba’s short-tailed bat (Carollia perspicillata ), and the Jamaican fruit bat (Artibeus jamaicensis ), and 10, 11, and 8 were polymorphic, respectively. -
Abstract Throughout the Galápagos, differences in coral reef development and coral population dynamics were evaluated by monitoring populations from 2000–2019, and environmental parameters (sea temperatures, pH, NO3−, PO43−) from 2015–19. The chief goal was to explain apparent coral community differences between the northern (Darwin and Wolf) and southern (Sta. Cruz, Fernandina, San Cristóbal, Española, Isabela) islands. Site coral species richness was highest at Darwin and Wolf. In the three most common coral taxa, a declining North (N)-South (S) trend in colony sizes existed for
Porites lobata andPocillopora spp., but not forPavona spp . Frequent coral recruitment was observed in all areas. Algal competition was highest at Darwin, but competition by bioeroding sea urchins and burrowing fauna (polychaete worms, bivalve mollusks) increased from N to S with declining coral skeletal density. A biophysical model suggested strong connectivity among southern islands with weaker connectivity to Wolf and even less to Darwin. Also, strong connectivity was observed between Darwin and Wolf, but from there only intermittently to the south. From prevailing ocean current trajectories, coral larvae from Darwin and Wolf drift primarily towards Malpelo and Cocos Islands, some reaching Costa Rica and Colombia. Mean temperature, pH, and PO43−declined from N to S. Strong thermocline shoaling, especially inmore » -
Isolation‐by‐distance and isolation‐by‐oceanography in Maroon Anemonefish ( Amphiprion biaculeatus )Obtaining dispersal estimates for a species is key to understanding local adaptation and population dynamics and to implementing conservation actions. Genetic isolation-by-distance (IBD) patterns can be used for estimating dispersal, and these patterns are especially useful for marine species in which few other methods are available. In this study, we genotyped coral reef fish (Amphiprion biaculeatus) at 16 microsatellite loci across eight sites across 210 km in the central Philippines to generate fine-scale estimates of dispersal. All sites except for one followed IBD patterns. Using IBD theory, we estimated a larval dispersal kernel spread of 8.9 km (95% confidence interval of 2.3–18.4 km). Genetic distance to the remaining site correlated strongly with the inverse probability of larval dispersal from an oceanographic model. Ocean currents were a better explanation for genetic distance at large spatial extents (sites greater than 150 km apart), while geographic distance remained the best explanation for spatial extents less than 150 km. Our study demonstrates the utility of combining IBD patterns with oceanographic simulations to understand connectivity in marine environments and to guide marine conservation strategies.
-
Abstract Chimerism is a coalescence of conspecific genotypes. Although common in nature, fundamental knowledge, such as the spatial distribution of the genotypes within chimeras, is lacking. Hence, we investigated the spatial distribution of conspecific genotypes within the brooding coral
Stylophora pistillata , a common species throughout the Indo-Pacific and Red Sea. From eight gravid colonies, we collected planula larvae that settled in aggregates, forming 2–3 partner chimeras. Coral chimeras grew in situ for up to 25 months. Nine chimeras (8 kin, 1 non-related genotypes) were sectioned into 7–17 fragments (6–26 polyps/fragment), and genotyped using eight microsatellite loci. The discrimination power of each microsatellite-locus was evaluated with 330 ‘artificial chimeras,’ made by mixing DNA from three differentS. pistillata genotypes in pairwise combinations. In 68% of ‘artificial chimeras,’ the second genotype was detected if it constituted 5–30% of the chimera. Analyses ofS. pistillata chimeras revealed that: (a) chimerism is a long-term state; (b) conspecifics were intermixed (not separate from one another); (c) disproportionate distribution of the conspecifics occurred; (d) cryptic chimerism (chimerism not detected via a given microsatellite) existed, alluding to the underestimation of chimerism in nature. Mixed chimerism may affect ecological/physiological outcomes for a chimera, especially in clonal organisms, and challenges the concept of individuality, affectingmore » -
High rates of dispersal can breakdown coadapted gene complexes. However, concentrated genomic architecture (i.e., genomic islands of divergence) can suppress recombination to allow evolution of local adaptations despite high gene flow. Pacific lamprey (Entosphenus tridentatus) is a highly dispersive anadromous fish. Observed trait diversity and evidence for genetic basis of traits suggests it may be locally adapted. We addressed whether concentrated genomic architecture could influence local adaptation for Pacific lamprey. Using two new whole genome assemblies and genotypes from 7,716 single nucleotide polymorphism (SNP) loci in 518 individuals from across the species range, we identified four genomic islands of divergence (on chromosomes 01, 02, 04, and 22). We determined robust phenotype-by-genotype relationships by testing multiple traits across geographic sites. These trait associations probably explain genomic divergence across the species’ range. We genotyped a subset of 302 broadly distributed SNPs in 2,145 individuals for association testing for adult body size, sexual maturity, migration distance and timing, adult swimming ability, and larval growth. Body size traits were strongly associated with SNPs on chromosomes 02 and 04. Moderate associations also implicated SNPs on chromosome 01 as being associated with variation in female maturity. Finally, we used candidate SNPs to extrapolate a heterogeneous spatiotemporalmore »