skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Environmental and spatial drivers of taxonomic, functional, and phylogenetic characteristics of bat communities in human-modified landscapes

Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes.


We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms.


The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition.


Variation among bat communities was related to environmental mechanisms, especially niche-based (i.e., environmental) processes, rather than spatial mechanisms. High variation in functional or phylogenetic dispersion, as opposed to functional or phylogenetic composition, suggests that loss or gain of niche space is driving the progressive loss or gain of species with particular traits from communities along the human-modified gradient. Thus, environmental characteristics associated with landscape structure influence functional or phylogenetic aspects of bat communities by effectively altering the ways in which species partition niche space.

more » « less
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    Theoretical, experimental and observational studies have shown that biodiversity–ecosystem functioning (BEF) relationships are influenced by functional community structure through two mutually non‐exclusive mechanisms: (1) the dominance effect (which relates to the traits of the dominant species); and (2) the niche partitioning effect [which relates to functional diversity (FD)]. Although both mechanisms have been studied in plant communities and experiments at small spatial extents, it remains unclear whether evidence from small‐extent case studies translates into a generalizable macroecological pattern. Here, we evaluate dominance and niche partitioning effects simultaneously in grassland systems world‐wide.


    Two thousand nine hundred and forty‐one grassland plots globally.

    Time period


    Major taxa studied

    Vascular plants.


    We obtained plot‐based data on functional community structure from the global vegetation plot database “sPlot”, which combines species composition with plant trait data from the “TRY” database. We used data on the community‐weighted mean (CWM) and FD for 18 ecologically relevant plant traits. As an indicator of primary productivity, we extracted the satellite‐derived normalized difference vegetation index (NDVI) from MODIS. Using generalized additive models and deviation partitioning, we estimated the contributions of trait CWM and FD to the variation in annual maximum NDVI, while controlling for climatic variables and spatial structure.


    Grassland communities dominated by relatively tall species with acquisitive traits had higher NDVI values, suggesting the prevalence of dominance effects for BEF relationships. We found no support for niche partitioning for the functional traits analysed, because NDVI remained unaffected by FD. Most of the predictive power of traits was shared by climatic predictors and spatial coordinates. This highlights the importance of community assembly processes for BEF relationships in natural communities.

    Main conclusions

    Our analysis provides empirical evidence that plant functional community structure and global patterns in primary productivity are linked through the resource economics and size traits of the dominant species. This is an important test of the hypotheses underlying BEF relationships at the global scale.

    more » « less
  2. Abstract Aim

    Tropical regions harbour over half of the world's mammals and birds, but how their communities have assembled over evolutionary timescales remains unclear. To compare eco‐evolutionary assembly processes between tropical mammals and birds, we tested how hypotheses concerning niche conservatism, environmental stability, environmental heterogeneity and time‐for‐speciation relate to tropical vertebrate community phylogenetic and functional structure.


    Tropical rainforests worldwide.

    Time period


    Major taxa studied

    Ground‐dwelling and ground‐visiting mammals and birds.


    We used in situ observations of species identified from systematic camera trap sampling as realized communities from 15 protected tropical rainforests in four tropical regions worldwide. We quantified standardized phylogenetic and functional structure for each community and estimated the multi‐trait phylogenetic signal (PS) in ecological strategies for the four regional species pools of mammals and birds. Using linear regression models, we test three non‐mutually exclusive hypotheses by comparing the relative importance of colonization time, palaeo‐environmental changes in temperature and land cover since 3.3 Mya, contemporary seasonality in temperature and productivity and environmental heterogeneity for predicting community phylogenetic and functional structure.


    Phylogenetic and functional structure showed non‐significant yet varying tendencies towards clustering or dispersion in all communities. Mammals had stronger multi‐trait PS in ecological strategies than birds (mean PS: mammal = 0.62, bird = 0.43). Distinct dominant processes were identified for mammal and bird communities. For mammals, colonization time and elevation range significantly predicted phylogenetic clustering and functional dispersion tendencies respectively. For birds, elevation range and contemporary temperature seasonality significantly predicted phylogenetic and functional clustering tendencies, respectively, while habitat diversity significantly predicted functional dispersion tendencies.

    Main conclusions

    Our results reveal different eco‐evolutionary assembly processes structuring contemporary tropical mammal and bird communities over evolutionary timescales that have shaped tropical diversity. Our study identified marked differences among taxonomic groups in the relative importance of historical colonization and sensitivity to environmental change.

    more » « less
  3. Abstract

    Lakes and their topological distribution across Earth's surface impose ecological and evolutionary constraints on aquatic metacommunities. In this study, we group similar lake ecosystems as metacommunity units influencing diatom community structure. We assembled a database of 195 lakes from the tropical Andes and adjacent lowlands (8°N–30°S and 58–79°W) with associated environmental predictors to examine diatom metacommunity patterns at two different levels: taxon and functional (deconstructed species matrix by ecological guilds). We also derived spatial variables that inherently assessed the relative role of dispersal. Using complementary multivariate statistical techniques (principal component analysis, cluster analysis, nonmetric multidimensional scaling, Procrustes, variance partitioning), we examined diatom–environment relationships among different lake habitats (sediment surface, periphyton, and plankton) and partitioned community variation to evaluate the influence of niche‐ and dispersal‐based assembly processes in diatom metacommunity structure across lake clusters. The results showed a significant association between geographic clusters of lakes based on gradients of climate and landscape configuration and diatom assemblages. Six lake clusters distributed along a latitudinal gradient were identified as functional metacommunity units for diatom communities. Variance partitioning revealed that dispersal mechanisms were a major contributor to diatom metacommunity structure, but in a highly context‐dependent fashion across lake clusters. In the Andean Altiplano and adjacent lowlands of Bolivia, diatom metacommunities are niche assembled but constrained by either dispersal limitation or mass effects, resulting from area, environmental heterogeneity, and ecological guild relationships. Topographic heterogeneity played an important role in structuring planktic diatom metacommunities. We emphasize the value of a guild‐based metacommunity model linked to dispersal for elucidating mechanisms underlying latitudinal gradients in distribution. Our findings reveal the importance of shifts in ecological drivers across climatic and physiographically distinct lake clusters, providing a basis for comparison of broad‐scale community gradients in lake‐rich regions elsewhere. This may help guide future research to explore evolutionary constraints on the rich Neotropical benthic diatom species pool.

    more » « less
  4. Abstract Aim

    We examined tree beta diversity in four biogeographical regions with contrasting environmental conditions, latitude, and diversity. We tested: (a) the influence of the species pool on beta diversity; (b) the relative contribution of niche‐based and dispersal‐based assembly to beta diversity; and (c) differences in the importance of these two assembly mechanisms in regions with differing productivity and species richness.


    Lowland and montane tropical forests in the Madidi region (Bolivia), lowland temperate forests in the Ozarks (USA), and montane temperate forests in the Cantabrian Mountains (Spain).


    We surveyed woody plants with a diameter ≥2.5 cm following a standardized protocol in 236 0.1‐ha forest plots in four different biogeographical regions. We estimated the species pool at each region and used it to recreate null communities determined entirely by the species pool. Observed patterns of beta diversity smaller or greater than the null‐expected patterns of beta diversity implies the presence of local assembly mechanisms beyond the influence of the species pool. We used variation‐partitioning analyses to compare the contribution of niche‐based and dispersal‐based assembly to patterns of observed beta diversity and their deviations from null models among the four regions.


    (a) Differences in species pools alone did not explain observed differences in beta diversity among biogeographic regions. (b) In 3/4 regions, the environment explained more of the variation in beta diversity than spatial variables. (c) Spatial variables explained more of the beta diversity in more diverse and more productive regions with more rare species (tropical and lower‐elevation regions) compared to less diverse and less productive regions (temperate and higher‐elevation regions). (d) Greater alpha or gamma diversity did not result in higher beta diversity or stronger correlations with the environment.


    Overall, the observed differences in beta diversity are better explained by differences in community assembly mechanism than by biogeographical processes that shaped the species pool.

    more » « less
  5. Abstract

    The structure of local ecological communities is thought to be determined by a series of hierarchical abiotic and biotic filters which select for or against species based on their traits. Many human impacts, like fragmentation, serve to alter environmental conditions across a range of spatial scales and may impact trait–environment interactions.

    We examined the effects of environmental variation associated with habitat fragmentation of seagrass habitat measured from microhabitat to landscape scales in controlling the taxonomic and trait‐based community structure of benthic fauna.

    We measured patterns in species abundance and biomass of seagrass epifauna and infauna sampled using sediment cores from 86 sites (across 21 meadows) in Back Sound, North Carolina, USA. We related local faunal community structure to environmental variation measured at three spatial scales (microhabitat, patch and landscape). Additionally, we tested the value of species traits in predicting species‐specific responses to habitat fragmentation across scales.

    While univariate measures of faunal communities (i.e. total density, biomass and species richness) were positively related to microhabitat‐scale seagrass biomass only, overall community structure was predicted by environmental variation at the microhabitat, patch (i.e. patch size) and landscape (i.e. number of patches, landscape seagrass area) scales. Furthermore, fourth‐corner analysis revealed that species traits explained as much variation in organismal densities as species identity. For example, species with planktonic‐dispersing larvae and deposit‐feeding trophic modes were more abundant in contiguous, high seagrass cover landscapes while suspension feeders favoured more fragmented landscapes.

    We present quantitative evidence supporting hierarchal models of community assembly which predict that interactions between species traits and environmental variation across scales ultimately drive local community composition. Variable responses of individual traits to multiple environmental variables suggest that community assembly processes that act on species via traits related to dispersal, mobility and trophic mode will be altered under habitat fragmentation. Additionally, with increasing global temperatures, the tropical seagrassHalodule wrightiiis predicted to replace the temperateZostera marinaas the dominate seagrass in our study region, therefore potentially favouring species with planktonic‐dispersing larva and weakening the strength of environmental control on community assembly.

    more » « less