Auxin is a hormone that is required for hypocotyl elongation during seedling development. In response to auxin, rapid changes in transcript and protein abundance occur in hypocotyls, and some auxin responsive gene expression is linked to hypocotyl growth. To functionally validate proteomic studies, a reverse genetics screen was performed on mutants in auxin‐regulated proteins to identify novel regulators of plant growth. This uncovered a long hypocotyl mutant, which we called
Plants respond to neighbor shade by increasing stem and petiole elongation. Shade, sensed by phytochrome photoreceptors, causes stabilization of
- PAR ID:
- 10020194
- Publisher / Repository:
- PeerJ
- Date Published:
- Journal Name:
- PeerJ
- Volume:
- 4
- ISSN:
- 2167-8359
- Page Range / eLocation ID:
- Article No. e2574
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract slim shady , in an annotated insertion line inIMMUNOREGULATORY RNA‐BINDING PROTEIN (IRR ). Overexpression of theIRR gene failed to rescue theslim shady phenotype and characterization of a second T‐DNA allele of IRR found that it had a wild‐type (WT) hypocotyl length. Theslim shady mutant has an elevated expression of numerous genes associated with the brassinosteroid‐auxin‐phytochrome (BAP) regulatory module compared to WT, including transcription factors that regulate brassinosteroid, auxin, and phytochrome pathways. Additionally,slim shady seedlings fail to exhibit a strong transcriptional response to auxin. Using whole genome sequence data and genetic complementation analysis with SALK_015201C, we determined that a novel single nucleotide polymorphism inPHYTOCHROME B was responsible for theslim shady phenotype. This is predicted to induce a frameshift and premature stop codon at leucine 1125, within the histidine kinase‐related domain of the carboxy terminus of PHYB, which is required for phytochrome signaling and function. Genetic complementation analyses withphyb‐9 confirmed thatslim shady is a mutant allele ofPHYB . This study advances our understanding of the molecular mechanisms in seedling development, by furthering our understanding of how light signaling is linked to auxin‐dependent cell elongation. Furthermore, this study highlights the importance of confirming the genetic identity of research material before attributing phenotypes to known mutations sourced from T‐DNA stocks. -
Abstract Shade-intolerant plants rapidly elongate their stems, branches, and leaf stalks to compete with neighboring vegetation, maximizing sunlight capture for photosynthesis. This rapid growth adaptation, known as the shade-avoidance response (SAR), comes at a cost: reduced biomass, crop yield, and root growth. Significant progress has been made on the mechanistic understanding of hypocotyl elongation during SAR; however, the molecular interpretation of root growth repression is not well understood. Here, we explore the mechanisms by which SAR induced by low red:far-red light restricts primary and lateral root (LR) growth. By analyzing the whole-genome transcriptome, we identified a core set of shade-induced genes in roots of Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) seedlings grown in the shade. Abiotic and biotic stressors also induce many of these shade-induced genes and are predominantly regulated by WRKY transcription factors. Correspondingly, a majority of WRKY genes were among the shade-induced genes. Functional analysis using transgenics of these shade-induced WRKYs revealed that their role is essentially to restrict primary root and LR growth in the shade; captivatingly, they did not affect hypocotyl elongation. Similarly, we also found that ethylene hormone signaling is necessary for limiting root growth in the shade. We propose that during SAR, shade-induced WRKY26, 45, and 75, and ethylene reprogram gene expression in the root to restrict its growth and development.more » « less
-
Organismal phenotypes often co-vary with environmental variables across broad geographic ranges. Less is known about the extent to which phenotypes match local conditions when multiple biotic and abiotic stressors vary at fine spatial scales. Bittercress (Brassicaceae: Cardamine cordifolia), a perennial forb, grows across a microgeographic mosaic of two contrasting herbivory regimes: high herbivory in meadows (sun habitats) and low herbivory in deeply shaded forest understories (shade habitats). We tested for local phenotypic differentiation in plant size, leaf morphology, and anti-herbivore defense (realized resistance and defensive chemicals, i.e., glucosinolates) across this habitat mosaic through reciprocal transplant–common garden experiments with clonally propagated rhizomes. We found habitat-specific divergence in morphological and defensive phenotypes that manifested as contrasting responses to growth in shade common gardens: weak petiole elongation and attenuated defenses in populations from shade habitats, and strong petiole elongation and elevated defenses in populations from sun habitats. These divergent phenotypes are generally consistent with reciprocal local adaptation: plants from shade habitats that naturally experience low herbivory show reduced investment in defense and an attenuated shade avoidance response, owing to its ineffectiveness within forest understories. By contrast, plants from sun habitats with high herbivory show shade-induced elongation, but no evidence of attenuated defenses canonically associated with elongation in shade-intolerant plant species. Finally, we observed differences in flowering phenology between habitat types that could potentially contribute to inter-habitat divergence by reducing gene flow. This study illuminates how clonally heritable plant phenotypes track a fine-grained mosaic of herbivore pressure and light availability in a native plant.more » « less
-
Premise Light is critical in the ability of plants to accumulate chlorophyll. When exposed to far‐red (
FR ) light and then grown in white light in the absence of sucrose, wild‐type seedlings fail to green in a response known as theFR block of greening (BOG ). This response is controlled by phytochrome A through repression of protochlorophyllide reductase‐encoding (POR ) genes byFR light coupled with irreversible plastid damage. Sigma (SIG ) factors are nuclear‐encoded proteins that contribute to plant greening and plastid development through regulating gene transcription in chloroplasts and impacting retrograde signaling from the plastid to nucleus.SIG s are regulated by phytochromes, and the expression of someSIG factors is reduced in phytochrome mutant lines, includingphyA . Given the association of phyA with theFR BOG and its regulation ofSIG factors, we investigated the potential regulatory role ofSIG factors in theFR BOG response.Methods We examined
FR BOG responses insig mutants, phytochrome‐deficient lines, and mutant lines for several phy‐associated factors. We quantified chlorophyll levels and examined expression of keyBOG ‐associated genes.Results Among six
sig mutants, only thesig6 mutant significantly accumulated chlorophyll afterFR BOG treatment, similar to thephyA mutant.SIG 6 appears to control protochlorophyllide accumulation by contributing to the regulation of tetrapyrrole biosynthesis associated with glutamyl‐tRNA reductase (HEMA 1) function, select phytochrome‐interacting factor genes (PIF4 andPIF6 ), andPENTA1 , which regulatesPORA mRNA translation afterFR exposure.Conclusions Regulation of
SIG6 plays a significant role in plant responses toFR exposure during theBOG response. -
Abstract Electric organ discharge (EOD) duration in African weakly electric fish (Mormyridae) is the most variable waveform component between species and the basis for distinguishing species-specific signals. EOD duration is thought to be influenced by morphological and physiological features of electrocytes (the cells that comprise the electric organ), but the mechanistic details are poorly understood. It has long been known that EOD duration is modulated by androgen hormones, affording an opportunity to identify gene expression correlates of EOD duration differences. We induced EOD elongation in the mormyrid
Brienomyrus brachyistius by administering 17α-methyltestosterone (17αMT) to three treatment groups: control (no 17αMT exposure), T1day and T8day (samples taken one and eight days after a single exposure to 17αMT, respectively). We then performed RNAseq, differential gene expression, and functional enrichment analysis to detect gene expression changes during EOD duration change. Our analyses indicate 44 genes whose expression changed in tandem with EOD elongation and include genes responsible for actin filaments and microtubules, extracellular matrix organization, and membrane lipid metabolism. Additionally, we found expression changes in one Na+channel beta subunit, and five K+voltage-gated channels. Together, these genes point toward specific cellular processes that contribute to morphological and physiological changes that contribute to EOD duration changes.