skip to main content


Title: Does regional diversity recover after disturbance? A field experiment in constructed ponds

The effects of disturbance on local species diversity have been well documented, but less recognized is the possibility that disturbances can alter diversity at regional spatial scales. Since regional diversity can dictate which species are available for recolonization of degraded sites, the loss of diversity at regional scales may impede the recovery of biodiversity following a disturbance. To examine this we used a chemical disturbance of rotenone, a piscicide commonly used for fish removal in aquatic habitats, on small fishless freshwater ponds. We focused on the non-target effects of rotenone on aquatic invertebrates with the goal of assessing biodiversity loss and recovery at both local (within-pond) and regional (across ponds) spatial scales. We found that rotenone caused significant, large, but short-term losses of species at both local and regional spatial scales. Using a null model of random extinction, we determined that species were selectively removed from communities relative to what would be expected if species loss occurred randomly. Despite this selective loss of biodiversity, species diversity at both local and regional spatial scales recovered to reference levels one year after the addition of rotenone. The rapid recovery of local and regional diversity in this study was surprising considering the large loss of regional species diversity, however many aquatic invertebrates disperse readily or have resting stages that may persist through disturbances. We emphasize the importance of considering spatial scale when quantifying the impacts of a disturbance on an ecosystem, as well as considering how regional species loss can influence recovery from disturbance.

 
more » « less
NSF-PAR ID:
10020338
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
PeerJ
Date Published:
Journal Name:
PeerJ
Volume:
4
ISSN:
2167-8359
Page Range / eLocation ID:
e2455
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Metacommunity theory predicts that the relative importance of regional and local processes structuring communities will change over ecological succession. Determining effects of these processes on taxonomic and evolutionary diversity in spatially structured freshwater habitats of different successional stages may greatly improve understanding of the maintenance of diversity across temporal and spatial scales. In this study, we evaluated crayfish diversity at local and regional scales in pond metacommunities undergoing secondary succession from beaver (Castor canadensis) disturbance. Following theoretical predictions from metacommunity ecology of the increasing importance of local processes over succession, we hypothesised a decline in crayfish local and β diversity over succession from stronger local structuring as the older ponds may provide less suitable habitat than streams.

    Crayfish species and phylogenetic diversity were evaluated in beaver pond metacommunities and reference headwater streams located in three catchment regions. DNA sequences from the mitochondrial cytochrome oxidase I gene were used to assign crayfish to species for community and phylogenetic diversity tests. Local and β diversity were contrasted across beaver ponds ranging in age from 24 to 70 years and as a function of metacommunity processes.

    Counter to predictions, local species diversity among streams and the successional stages of ponds categorised by age class (24–39 years; 42–57 years; 60–70 years) did not differ, but community and phylogenetic convergence occurred in the oldest pond ecosystems. Crayfish community composition differed between the youngest and oldest ponds, resulting from higher abundance in the youngest ponds and community convergence in the oldest ponds. The association between community composition and the environment was strongest in streams and decoupled with pond age. In contrast, the correlation between intraspecific haplotype composition and the environment increased over succession. Among the three metacommunities, the regional crayfish species diversity arose from a combination of the temporal and environmental drivers from beaver‐constructed ecosystems and dispersal limitation within catchments.

    This study represents the first investigation of the taxonomic and phylogenetic diversity response to the successional stages of beaver pond metacommunities. The detection of differential crayfish composition and haplotype sorting to pond age suggests a role for local structuring and further indicates that future studies should acknowledge succession in shaping species diversity at local and regional scales. Dispersal limitation within catchment regions probably contributes to the evolution of crayfish species diversity in metacommunities and the overall maintenance of biodiversity.

    The results support a transition in community and freshwater ecology from a recent emphasis on spatial processes towards the integration of temporal drivers to better identify regulators of taxonomic and phylogenetic diversity across scales.

     
    more » « less
  2. 1) Urbanization may lead to changes in local richness (alpha diversity) or in community composition (beta diversity), although the direction of change can be challenging to predict. For instance, introduced species may offset the loss of native specialist taxa, leading to no change in alpha diversity in urban areas, but decreased beta diversity (i.e., more homogenous community structure). Alternatively, because urban areas can have low connectivity and high environmental heterogeneity between sites, they may support distinct communities from one another over small geographic distances. 2) Wetlands and ponds provide critical ecosystem services and support diverse communities, making them important systems in which to understand consequences of urbanization. To determine how urban development shapes pond community structure, we surveyed 68 ponds around Madison, Wisconsin, USA, which were classified as urban, greenspace, or rural based on surrounding land use. We evaluated the influence of local abiotic factors, presence of nonnative fishes, and landscape characteristics on alpha diversity of aquatic plants, macroinvertebrates, and vertebrates. We also analyzed whether surrounding land cover was associated with changes in community composition and/or the presence of specific taxa. 3) We found a 23% decrease in mean richness (alpha diversity) from rural to urban pond sites, and a 15% decrease in richness from rural to urban greenspace pond sites. Among landscape factors, observed pond richness was negatively correlated with adjacent developed land and mowed lawns, as well as greater distances to other waterbodies. Among pond level factors, habitat complexity was associated with increased richness, while the presence of invasive fish was associated with decreased richness. 4) Beta diversity was relatively high for all ponds due to turnover in composition between sites. Urban ponds supported more introduced species, lacked a subset of native species found in rural ponds, and had slightly higher beta diversity than greenspace and rural ponds. 5) Synthesis and Applications: Integrating ponds into connected greenspaces comprised of native vegetation (rather than mowed grass), preventing nonnative fish introductions, and promoting habitat complexity may mitigate negative effects of urbanization on aquatic richness. The high beta diversity of distinct pond communities emphasizes their importance to biodiversity support in urban environments, despite being small in size and rarely incorporated into urban conservation planning. 
    more » « less
  3. 1) Urbanization may lead to changes in local richness (alpha diversity) or in community composition (beta diversity), although the direction of change can be challenging to predict. For instance, introduced species may offset the loss of native specialist taxa, leading to no change in alpha diversity in urban areas, but decreased beta diversity (i.e., more homogenous community structure). Alternatively, because urban areas can have low connectivity and high environmental heterogeneity between sites, they may support distinct communities from one another over small geographic distances. 2) Wetlands and ponds provide critical ecosystem services and support diverse communities, making them important systems in which to understand consequences of urbanization. To determine how urban development shapes pond community structure, we surveyed 68 ponds around Madison, Wisconsin, USA, which were classified as urban, greenspace, or rural based on surrounding land use. We evaluated the influence of local abiotic factors, presence of nonnative fishes, and landscape characteristics on alpha diversity of aquatic plants, macroinvertebrates, and vertebrates. We also analyzed whether surrounding land cover was associated with changes in community composition and/or the presence of specific taxa. 3) We found a 23% decrease in mean richness (alpha diversity) from rural to urban pond sites, and a 15% decrease in richness from rural to urban greenspace pond sites. Among landscape factors, observed pond richness was negatively correlated with adjacent developed land and mowed lawns, as well as greater distances to other waterbodies. Among pond level factors, habitat complexity was associated with increased richness, while the presence of invasive fish was associated with decreased richness. 4) Beta diversity was relatively high for all ponds due to turnover in composition between sites. Urban ponds supported more introduced species, lacked a subset of native species found in rural ponds, and had slightly higher beta diversity than greenspace and rural ponds. 5) Synthesis and Applications: Integrating ponds into connected greenspaces comprised of native vegetation (rather than mowed grass), preventing nonnative fish introductions, and promoting habitat complexity may mitigate negative effects of urbanization on aquatic richness. The high beta diversity of distinct pond communities emphasizes their importance to biodiversity support in urban environments, despite being small in size and rarely incorporated into urban conservation planning. 
    more » « less
  4. Abstract

    Understanding the mechanisms of spatial variation of biological invasions, across local‐to‐global scales, has been a major challenge. The importance of evolutionary history for invasion dynamics was noted by Darwin, and several studies have since considered how biodiversity of source and recipient regions can influence the probability of invasions. For over a century, the Panama Canal has connected water bodies and biotas with different evolutionary histories, and created a global shipping hot spot, providing unique opportunities to test mechanisms that affect invasion patterns. Here, we test for asymmetry in both the extent of invasions and predation effects, a possible mechanism of biotic resistance, between two tropical oceans at similar latitudes. We estimated nonnative species (NNS) richness for sessile marine invertebrates, using standardized field surveys and literature synthesis, to examine whether invasions are asymmetrical, with more NNS present in the less diverse Pacific compared to the Atlantic. We also experimentally tested whether predation differentially limits the abundance and distribution of these invertebrates between oceans. In standardized surveys, observed total NNS richness was higher in the Pacific (18 NNS, 30% of all Pacific species) than the Atlantic (11 NNS, 13% of all Atlantic species). Similarly, literature‐based records also display this asymmetry between coasts. When considering only the reciprocal exchange of NNS between Atlantic and Pacific biotas, NNS exchange from Atlantic to Pacific was eightfold higher than the opposite direction, exceeding the asymmetry predicted by random exchange based simply on differences of overall diversity per region. Predation substantially reduced biomass and changed NNS composition in the Pacific, but no such effects were detected on the Atlantic coast. Specifically, some dominant NNS were particularly susceptible to predation in the Pacific, supporting the hypothesis that predation may reduce the abundance of certain NNS here. These results are consistent with predictions that high diversity in source regions, and species interactions in recipient regions, shape marine invasion patterns. Our comparisons and experiments across two tropical ocean basins, suggest that global invasion dynamics are likely driven by both ecological and evolutionary factors that shape susceptibility to and directionality of invasions across biogeographic scales.

     
    more » « less
  5. Abstract

    Identifying the factors that destabilize communities is critical for predicting and mitigating the ecological impacts of environmental change. Although theory has shown that local ecosystem size and regional dispersal can determine biodiversity, less is known about the direct and indirect effects of these factors on community stability. Here we show that multitrophic community instability of invertebrates and fishes in coastal ponds is negatively related to local pond size and positively related to distance to the ocean, a proxy for dispersal limitation. Importantly, the effects of pond size and distance on instability were direct rather than indirectly mediated by species richness. This suggests that the diversity–stability relationship is an epiphenomenon whose resolution is neither necessary nor sufficient to understand the stability of these multitrophic communities. Instead, well‐established and easily measured local and regional factors historically linked to species richness can be used to predict multitrophic community stability in a variable world.

     
    more » « less