skip to main content


Title: Hyainailourine and teratodontine cranial material from the late Eocene of Egypt and the application of parsimony and Bayesian methods to the phylogeny and biogeography of Hyaenodonta (Placentalia, Mammalia)

Hyaenodonta is a diverse, extinct group of carnivorous mammals that included weasel- to rhinoceros-sized species. The oldest-known hyaenodont fossils are from the middle Paleocene of North Africa and the antiquity of the group in Afro-Arabia led to the hypothesis that it originated there and dispersed to Asia, Europe, and North America. Here we describe two new hyaenodont species based on the oldest hyaenodont cranial specimens known from Afro-Arabia. The material was collected from the latest Eocene Locality 41 (L-41, ∼34 Ma) in the Fayum Depression, Egypt.Akhnatenavus nefertiticyonsp. nov. has specialized, hypercarnivorous molars and an elongate cranial vault. InA. nefertiticyonthe tallest, piercing cusp on M1–M2is the paracone.Brychotherium ephalmosgen. et sp. nov. has more generalized molars that retain the metacone and complex talonids. InB. ephalmosthe tallest, piercing cusp on M1–M2is the metacone. We incorporate this new material into a series of phylogenetic analyses using a character-taxon matrix that includes novel dental, cranial, and postcranial characters, and samples extensively from the global record of the group. The phylogenetic analysis includes the first application of Bayesian methods to hyaenodont relationships.B. ephalmosis consistently placed within Teratodontinae, an Afro-Arabian clade with several generalist and hypercarnivorous forms, andAkhnatenavusis consistently recovered in Hyainailourinae as part of an Afro-Arabian radiation. The phylogenetic results suggest that hypercarnivory evolved independently three times within Hyaenodonta: in Teratodontinae, in Hyainailourinae, and in Hyaenodontinae. Teratodontines are consistently placed in a close relationship with Hyainailouridae (Hyainailourinae + Apterodontinae) to the exclusion of “proviverrines,” hyaenodontines, and several North American clades, and we propose that the superfamily Hyainailouroidea be used to describe this relationship. Using the topologies recovered from each phylogenetic method, we reconstructed the biogeographic history of Hyaenodonta using parsimony optimization (PO), likelihood optimization (LO), and Bayesian Binary Markov chain Monte Carlo (MCMC) to examine support for the Afro-Arabian origin of Hyaenodonta. Across all analyses, we found that Hyaenodonta most likely originated in Europe, rather than Afro-Arabia. The clade is estimated by tip-dating analysis to have undergone a rapid radiation in the Late Cretaceous and Paleocene; a radiation currently not documented by fossil evidence. During the Paleocene, lineages are reconstructed as dispersing to Asia, Afro-Arabia, and North America. The place of origin of Hyainailouroidea is likely Afro-Arabia according to the Bayesian topologies but it is ambiguous using parsimony. All topologies support the constituent clades–Hyainailourinae, Apterodontinae, and Teratodontinae–as Afro-Arabian and tip-dating estimates that each clade is established in Afro-Arabia by the middle Eocene.

 
more » « less
NSF-PAR ID:
10020880
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
PeerJ
Date Published:
Journal Name:
PeerJ
Volume:
4
ISSN:
2167-8359
Page Range / eLocation ID:
Article No. e2639
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Phylogenetic evidence suggests that platyrrhine (or New World) monkeys and caviomorph rodents of the Western Hemisphere derive from source groups from the Eocene of Afro-Arabia, a landmass that was ~1500 to 2000 kilometers east of South America during the late Paleogene. Here, we report evidence for a third mammalian lineage of African origin in the Paleogene of South America—a newly discovered genus and species of parapithecid anthropoid primate from Santa Rosa in Amazonian Perú. Bayesian clock–based phylogenetic analysis nests this genus (Ucayalipithecus) deep within the otherwise Afro-Arabian clade Parapithecoidea and indicates that transatlantic rafting of the lineage leading toUcayalipithecuslikely took place between ~35 and ~32 million years ago, a dispersal window that includes the major worldwide drop in sea level that occurred near the Eocene-Oligocene boundary.

     
    more » « less
  2. Abstract

    The Old‐World Tropics encompass many unique biomes and associated biotas shaped by drastic climate and geological changes throughout the Cenozoic. Disjunct distributions of clades between the Afrotropics and the Oriental regions are testament to these changes. Awl and policeman skippers (Hesperiidae: Coeliadinae) are disjunctly distributed with some genera endemic to the Afrotropics and others restricted to the Oriental and Australian regions. We reconstruct the phylogeny of these butterflies using target exon capture phylogenomics. We also generate a dated framework for this clade that uses the putatively oldest known butterfly fossil to estimate the historical biogeography of Coeliadinae using a model‐based approach. We infer a stable and robust phylogeny for the subfamily, with all but one Afrotropical lineage forming a derived clade. The African genusPyrrhiadessyn. nov.is placed in synonymy withCoeliadesto accommodate the new phylogeny. Our comparative dating exercise casts doubt on the assignment of the fossilProtocoeliades kristensenias a derived Coeliadinae and suggests, along with our biogeographic estimation, a split of Coeliadinae from the rest of skippers in the Palaeoceneca. 70 million years ago. The origin of crown Coeliadinae skippers is estimated in Indomalaya during the late Eoceneca. 36 million years ago, with subsequent Oligocene colonisation events toward the Australian region and the Afrotropics. Colonisation of the Afrotropics from the Indian region occurred during climatic transition, associated biome shifts, and the closure of the Tethys Ocean, which likely allowed geodispersal through the Arabian Peninsula. The current disjunct distribution of Coeliadinae in the Old World Tropics may result from the emergence of savannahs in the Miocene that progressively replaced woodlands and forests in the Arabian Peninsula and western Asia. Coeliadinae skippers are almost exclusively dicot feeders and were likely extirpated as grasslands became dominant, resulting in the present‐day disjunct distribution of these butterflies.

     
    more » « less
  3. It is now well established that the end-Cretaceous mass extinction had enormous repercussions for mammalian evolution. Following the extinction, during the Paleocene, mammals started to radiate, occupying new and diverse ecological niches. However, the phylogenetic relationships between the socalled “archaic” mammals of this time, and their position within Placentalia, remain contentious. The Periptychidae are a clade of distinctive “archaic” ungulates, composed of ~17 genera of small to large bodied, highly bunodont, terrestrial herbivores that were among the first placental mammals to appear after the end-Cretaceous mass extinction. Although the Periptychidae has been historically considered a distinctive “condylarth” subgroup, their higherlevel relationships have been rarely tested. Here, we present an inclusive cladistic analysis to determine and test the phylogenetic affinities of Periptychidae and other key Paleocene groups within Placentalia under different cladistic optimality criteria. We scored 140 taxa for 503 dental, cranial and postcranial characters, incorporating new morphological and taxonomic data. The data were then subject to parsimony and Bayesian tree of morphological evolution, running 5000000 generations with samples every 200 generations and discarding 25% of the samples as burn-in. Stationarity was achieved and a 50 percent majority rule consensus tree from the sampled trees was obtained. The parsimony analysis recovered 48 most parsimonious trees. The two consensus trees derived from the different analyses are largely congruent and recover a monophyletic Periptychidae, although the parsimony consensus tree is better resolved. These results are consistent with simulation studies showing that parsimony tends to be more precise (more nodes reconstructed) than Bayesian analyses, although less accurate. The main topological differences between the results relate to the position of poorly known Puercan (earliest Paleocene) species. Our results affirm the monophyly of Periptychidae and its nesting within a group of “condylarths” positioned at the base of Laurasiatheria and closely related to Artiodactyla. Within Periptychidae we found support for the three major subfamilial divisions in both analyses. These results highlight the importance of using different optimality criteria when resolving a phylogeny and provide a new insight into how placental mammals were evolving after the end-Cretaceous extinction. Grant Information: CONICYT PFCHA/DOCTORADO BECAS CHILE/2018, European Research Council Starting Grant (ERC StG 2017, 756226, PalM), National Science Foundation (NSF EAR 1654952, DEB 1654949) 
    more » « less
  4. Abstract

    Caimaninae is one of the few crocodylian lineages that still has living representatives. Today, most of its six extant species are restricted to South and Central America. However, recent discoveries have revealed a more complex evolutionary history, with a fossil record richer than previously thought and a possible North American origin. Among the oldest caimanines isEocaiman cavernensis, from the Eocene of Patagonia, Argentina. It was described by George G. Simpson in the 1930s, representing the first caimanine reported for the Palaeogene. Since then,E. cavernensishas been ubiquitous in phylogenetic studies on the group, but a more detailed morphological description and revision of the taxon were lacking. Here, we present a reassessment ofE. cavernensis, based on first‐hand examination and micro‐computed tomography of the holotype, and reinterpret different aspects of its morphology. We explore the phylogenetic affinities ofE. cavernensisand other caimanines using parsimony and Bayesian inference approaches. Our results provide evidence for a monophyleticEocaimangenus within Caimaninae, even though some highly incomplete taxa (including the congenericEocaiman itaboraiensis) represent significant sources of phylogenetic instability. We also foundCulebrasuchus mesoamericanusas sister to all other caimanines and the North American globidontans (i.e.Brachychampsaand closer relatives) outside Caimaninae. A time‐calibrated tree, obtained using a fossilized birth–death model, shows a possible Campanian origin for the group (76.97 ± 6.7 Ma), which is older than the age estimated using molecular data, and suggests that the earliest cladogenetic events of caimanines took place rapidly and across the K–Pg boundary.

     
    more » « less
  5. Abstract

    Diverse lines of geological and geochemical evidence indicate that the Eocene-Oligocene transition (EOT) marked the onset of a global cooling phase, rapid growth of the Antarctic ice sheet, and a worldwide drop in sea level. Paleontologists have established that shifts in mammalian community structure in Europe and Asia were broadly coincident with these events, but the potential impact of early Oligocene climate change on the mammalian communities of Afro-Arabia has long been unclear. Here we employ dated phylogenies of multiple endemic Afro-Arabian mammal clades (anomaluroid and hystricognath rodents, anthropoid and strepsirrhine primates, and carnivorous hyaenodonts) to investigate lineage diversification and loss since the early Eocene. These analyses provide evidence for widespread mammalian extinction in the early Oligocene of Afro-Arabia, with almost two-thirds of peak late Eocene diversity lost in these clades by ~30 Ma. Using homology-free dental topographic metrics, we further demonstrate that the loss of Afro-Arabian rodent and primate lineages was associated with a major reduction in molar occlusal topographic disparity, suggesting a correlated loss of dietary diversity. These results raise new questions about the relative importance of global versus local influences in shaping the evolutionary trajectories of Afro-Arabia’s endemic mammals during the Oligocene.

     
    more » « less