skip to main content


Title: The scavenger receptor repertoire in six cnidarian species and its putative role in cnidarian-dinoflagellate symbiosis

Many cnidarians engage in a mutualism with endosymbiotic photosynthetic dinoflagellates that forms the basis of the coral reef ecosystem. Interpartner interaction and regulation includes involvement of the host innate immune system. Basal metazoans, including cnidarians have diverse and complex innate immune repertoires that are just beginning to be described. Scavenger receptors (SR) are a diverse superfamily of innate immunity genes that recognize a broad array of microbial ligands and participate in phagocytosis of invading microbes. The superfamily includes subclades named SR-A through SR-I that are categorized based on the arrangement of sequence domains including the scavenger receptor cysteine rich (SRCR), the C-type lectin (CTLD) and the CD36 domains. Previous functional and gene expression studies on cnidarian-dinoflagellate symbiosis have implicated SR-like proteins in interpartner communication and regulation. In this study, we characterized the SR repertoire from a combination of genomic and transcriptomic resources from six cnidarian species in the Class Anthozoa. We combined these bioinformatic analyses with functional experiments using the SR inhibitor fucoidan to explore a role for SRs in cnidarian symbiosis and immunity. Bioinformatic searches revealed a large diversity of SR-like genes that resembled SR-As, SR-Bs, SR-Es and SR-Is. SRCRs, CTLDs and CD36 domains were identified in multiple sequences in combinations that were highly homologous to vertebrate SRs as well as in proteins with novel domain combinations. Phylogenetic analyses of CD36 domains of the SR-B-like sequences from a diversity of metazoans grouped cnidarian with bilaterian sequences separate from other basal metazoans. All cnidarian sequences grouped together with moderate support in a subclade separately from bilaterian sequences. Functional experiments were carried out on the sea anemoneAiptasia pallidathat engages in a symbiosis withSymbiodinium minutum(clade B1). Experimental blocking of the SR ligand binding site with the inhibitor fucoidan reduced the ability ofS. minutumto colonizeA. pallidasuggesting that host SRs play a role in host-symbiont recognition. In addition, incubation of symbiotic anemones with fucoidan elicited an immune response, indicating that host SRs function in immune modulation that results in host tolerance of the symbionts.

 
more » « less
NSF-PAR ID:
10020988
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
PeerJ
Date Published:
Journal Name:
PeerJ
Volume:
4
ISSN:
2167-8359
Page Range / eLocation ID:
e2692
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mutualistic symbioses between cnidarians and photosynthetic algae are modulated by complex interactions between host immunity and environmental conditions. Here, we investigate how symbiosis interacts with food limitation to influence gene expression and stress response programming in the sea anemoneExaiptasia pallida(Aiptasia). Transcriptomic responses to starvation were similar between symbiotic and aposymbiotic Aiptasia; however, aposymbiotic anemone responses were stronger. Starved Aiptasia of both symbiotic states exhibited increased protein levels of immune-related transcription factor NF-κB, its associated gene pathways, and putative target genes. However, this starvation-induced increase in NF-κB correlated with increased immunity only in symbiotic anemones. Furthermore, starvation had opposite effects on Aiptasia susceptibility to pathogen and oxidative stress challenges, suggesting distinct energetic priorities under food scarce conditions. Finally, when we compared starvation responses in Aiptasia to those of a facultative coral and non-symbiotic anemone, ‘defence’ responses were similarly regulated in Aiptasia and the facultative coral, but not in the non-symbiotic anemone. This pattern suggests that capacity for symbiosis influences immune responses in cnidarians. In summary, expression of certain immune pathways—including NF-κB—does not necessarily predict susceptibility to pathogens, highlighting the complexities of cnidarian immunity and the influence of symbiosis under varying energetic demands.

     
    more » « less
  2. Coral reefs, one of the world's most productive and diverse ecosystems, are currently threatened by a variety of stressors that result in increased prevalence of both bleaching and disease. Therefore, understanding the molecular mechanisms involved in these responses is critical to mitigate future damage to the reefs. One group of genes that is potentially involved in cnidarian immunity and symbiosis is GTPases of Immunity Associated Proteins (GIMAP). In vertebrates, this family of proteins is involved in regulating the fate of developing lymphocytes and interacts with proteins involved in apoptosis and autophagy. Since apoptosis, autophagy, and immunity have previously shown to be involved in cnidarian symbiosis and disease, the goal of this research was to determine the role of cnidarian GIMAPs in these processes using the anemone Exaiptasia pallida. To do so, GIMAP genes were characterized in the E. pallida genome and changes in gene expression were measured using qPCR in response to chemical induction of apoptosis, autophagy, and treatment with the immune stimulant lipopolysaccharide (LPS) in both aposymbiotic and symbiotic anemones. The results revealed four GIMAP-like genes in E. pallida, referred to as Ep_GIMAPs. Induction of apoptosis and autophagy resulted in a general downregulation of Ep_GIMAPs, but no significant changes were observed in response to LPS treatment. This indicates Ep_GIMAPs may be involved in regulation of apoptosis and autophagy, and therefore could play a role in cnidarian-dinoflagellate symbiosis. Overall, these results increase our knowledge on the function of GIMAPs in a basal metazoan. 
    more » « less
  3. Abstract Innate immunity is an ancient physiological response critical for protecting metazoans from invading pathogens. It is the primary pathogen defense mechanism among invertebrates. While innate immunity has been studied extensively in diverse invertebrate taxa, including mollusks, crustaceans, and cnidarians, this system has not been well characterized in ctenophores. The ctenophores comprise an exclusively marine, non-bilaterian lineage that diverged early during metazoan diversification. The phylogenetic position of ctenophore lineage suggests that characterization of the ctenophore innate immune system will reveal important features associated with the early evolution of the metazoan innate immune system. Here, we review current understanding of the ctenophore immune repertoire and identify innate immunity genes recovered from three ctenophore species. We also isolate and characterize Mnemiopsis leidyi cells that display macrophage-like behavior when challenged with bacteria. Our results indicate that ctenophores possess cells capable of phagocytosing microbes and that two distantly related ctenophores, M. leidyi and Hormiphora californiensis, possess many candidate innate immunity proteins. 
    more » « less
  4. Abstract Environmental stress from ultraviolet radiation, elevated temperatures or metal toxicity can lead to reactive oxygen species in cells, leading to oxidative DNA damage, premature aging, neurodegenerative diseases, and cancer. The transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activates many cytoprotective proteins within the nucleus to maintain homeostasis during oxidative stress. In vertebrates, Nrf2 levels are regulated by the Kelch-family protein Keap1 (Kelch-like ECH-associated protein 1) in the absence of stress according to a canonical redox control pathway. Little, however, is known about the redox control pathway used in early diverging metazoans. Our study examines the presence of known oxidative stress regulatory elements within non-bilaterian metazoans including free living and parasitic cnidarians, ctenophores, placozoans, and sponges. Cnidarians, with their pivotal position as the sister phylum to bilaterians, play an important role in understanding the evolutionary history of response to oxidative stress. Through comparative genomic and transcriptomic analysis our results show that Nrf homologs evolved early in metazoans, whereas Keap1 appeared later in the last common ancestor of cnidarians and bilaterians. However, key Nrf–Keap1 interacting domains are not conserved within the cnidarian lineage, suggesting this important pathway evolved with the radiation of bilaterians. Several known downstream Nrf targets are present in cnidarians suggesting that cnidarian Nrf plays an important role in oxidative stress response even in the absence of Keap1. Comparative analyses of key oxidative stress sensing and response proteins in early diverging metazoans thus provide important insights into the molecular basis of how these lineages interact with their environment and suggest a shared evolutionary history of regulatory pathways. Exploration of these pathways may prove important for the study of cancer therapeutics and broader research in oxidative stress, senescence, and the functional responses of early diverging metazoans to environmental change. 
    more » « less
  5. null (Ed.)
    Abstract In cnidarian-Symbiodiniaceae symbioses, algal endosymbiont population control within the host is needed to sustain a symbiotic relationship. However, the molecular mechanisms that underlie such population control are unclear. Here we show that a cnidarian host uses nitrogen limitation as a primary mechanism to control endosymbiont populations. Nitrogen acquisition and assimilation transcripts become elevated in symbiotic Breviolum minutum algae as they reach high-densities within the sea anemone host Exaiptasia pallida . These same transcripts increase in free-living algae deprived of nitrogen. Symbiotic algae also have an elevated carbon-to-nitrogen ratio and shift metabolism towards scavenging nitrogen from purines relative to free-living algae. Exaiptasia glutamine synthetase and glutamate synthase transcripts concomitantly increase with the algal endosymbiont population, suggesting an increased ability of the host to assimilate ammonium. These results suggest algal growth and replication in hospite is controlled by access to nitrogen, which becomes limiting for the algae as their population within the host increases. 
    more » « less