skip to main content

Title: Coupled impacts of climate and land use change across a river–lake continuum: insights from an integrated assessment model of Lake Champlain’s Missisquoi Basin, 2000–2040
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
Journal Name:
Environmental Research Letters
Page Range or eLocation-ID:
Article No. 114026
IOP Publishing
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Lake-effect precipitation is convective precipitation produced by relatively cold air passing over large and relatively warm bodies of water. This phenomenon most often occurs in North America over the southern and eastern shores of the Great Lakes, where high annual snowfalls and high-impact snowstorms frequently occur under prevailing west and northwest flow. Locally higher snow or rainfall amounts also occur due to lake-enhanced synoptic precipitation when conditionally unstable or neutrally stratified air is present in the lower troposphere. While likely less common, lake-effect and lake-enhanced precipitation can also occur with easterly winds, impacting the western shores of the Great Lakes. This study describes a 15-year climatology of easterly lake-effect (ELEfP) and lake-enhanced (ELEnP) precipitation (conjointly Easterly Lake Collective Precipitation: ELCP) events that developed in east-to-east-northeasterly flow over western Lake Superior from 2003 to 2018. ELCP occurs infrequently but often enough to have a notable climatological impact over western Lake Superior with an average of 14.6 events per year. The morphology favors both single shore-parallel ELEfP bands due to the convex western shoreline of Lake Superior and mixed-type banding due to ELEnP events occurring in association with “overrunning” synoptic-scale precipitation. ELEfP often occurs in association with a surface anticyclone tomore »the north of Lake Superior. ELEnP typically features a similar northerly-displaced anticyclone and a surface cyclone located over the U.S. Upper Midwest that favor easterly boundary-layer winds over western Lake Superior.« less
  2. Searles Lake, California, was a saline-alkaline lake that deposited >25 non-clastic minerals that record the history of lake chemistry and regional climate. Here, the mineralogy and petrography from the late Pleistocene/Holocene (32−6 ka) portion of a new Searles Lake sediment core, SLAPP-SRLS17, is combined with thermodynamic models to determine the geochemical and paleoclimate conditions required to produce the observed mineral phases, sequences, and abundances. The models reveal that the primary precipitates formed by open system (i.e., fractional crystallization), whereas the early diagenetic salts formed by salinity-driven closed system back-reactions (i.e., equilibrium crystallization). For core SLAPP-SRLS17, the defining evaporite sequence trona → burkeite → halite indicates brine temperatures within a 20−29 °C range, implying thermally insulating lake depths >10 m during salt deposition. Evaporite phases reflect lake water pCO2 consistent with contemporaneous atmospheric values of ∼190−270 ppmv. However, anomalous layers of nahcolite and thenardite indicate pulses of pCO2 > 700−800 ppm, likely due to variable CO2 injection along faults. Core sedimentology indicates that Searles Lake was continuously perennial between 32 ka and 6 ka such that evaporite units reflect periods of net evaporation but never complete desiccation. Model simulations indicate that cycles of partial evaporation and dilution strongly influence long-term brinemore »evolution by amassing certain species, particularly Cl−, that only occur in late-stage soluble salts. A model incorporating long-term brine dynamics corrects previous mass-balance anomalies and shows that the late Pleistocene/Holocene (32−6 ka) salts are partially inherited from the solutes introduced into earlier lakes going back at least 150 ka.« less