skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stable Optical Trap from a Single Optical Field Utilizing Birefringence
Award ID(s):
1150531
PAR ID:
10021112
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Letters
Volume:
117
Issue:
21
ISSN:
0031-9007; PRLTAO
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rapidly increasing size of deep-learning models has renewed interest in alternatives to digital-electronic computers as a means to dramatically reduce the energy cost of running state-of-the-art neural networks. Optical matrix-vector multipliers are best suited to performing computations with very large operands, which suggests that large Transformer models could be a good target for them. In this paper, we investigate---through a combination of simulations and experiments on prototype optical hardware---the feasibility and potential energy benefits of running Transformer models on future optical accelerators that perform matrix-vector multiplication. We use simulations, with noise models validated by small-scale optical experiments, to show that optical accelerators for matrix-vector multiplication should be able to accurately run a typical Transformer architecture model for language processing. We demonstrate that optical accelerators can achieve the same (or better) perplexity as digital-electronic processors at 8-bit precision, provided that the optical hardware uses sufficiently many photons per inference, which translates directly to a requirement on optical energy per inference. We studied numerically how the requirement on optical energy per inference changes as a function of the Transformer width $$d$$ and found that the optical energy per multiply--accumulate (MAC) scales approximately as $$\frac{1}{d}$$, giving an asymptotic advantage over digital systems. We also analyze the total system energy costs for optical accelerators running Transformers, including both optical and electronic costs, as a function of model size. We predict that well-engineered, large-scale optical hardware should be able to achieve a $$100 \times$$ energy-efficiency advantage over current digital-electronic processors in running some of the largest current Transformer models, and if both the models and the optical hardware are scaled to the quadrillion-parameter regime, optical accelerators could have a $$>8,000\times$$ energy-efficiency advantage. Under plausible assumptions about future improvements to electronics and Transformer quantization techniques (5× cheaper memory access, double the digital--analog conversion efficiency, and 4-bit precision), we estimate that the energy advantage for optical processors versus electronic processors operating at 300~fJ/MAC could grow to $$>100,000\times$$. 
    more » « less
  2. We experimentally demonstrate a recurrent optical neural network based on a nanophotonic optical parametric oscillator fabricated on thin-film lithium niobate. Our demonstration paves the way for realizing optical neural networks exhibiting ultra-low la-tencies. 
    more » « less