skip to main content


Title: Gaussian orthogonal ensemble statistics in graphene billiards with the shape of classically integrable billiards
NSF-PAR ID:
10021780
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review E
Volume:
94
Issue:
6
ISSN:
2470-0045
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Let $m_G$ denote the number of perfect matchings of the graph $G$. We introduce a number of combinatorial tools for determining the parity of $m_G$ and giving a lower bound on the power of 2 dividing $m_G$. In particular, we introduce certain vertex sets called channels, which correspond to elements in the kernel of the adjacency matrix of $G$ modulo $2$. A result of Lovász states that the existence of a nontrivial channel is equivalent to $m_G$ being even. We give a new combinatorial proof of this result and strengthen it by showing that the number of channels gives a lower bound on the power of $2$ dividing $m_G$ when $G$ is planar. We describe a number of local graph operations which preserve the number of channels. We also establish a surprising connection between 2-divisibility of $m_G$ and dynamical systems by showing an equivalency between channels and billiard paths. We exploit this relationship to show that $2^{\frac{\gcd(m+1,n+1)-1}{2}}$ divides the number of domino tilings of the $m\times n$ rectangle. We also use billiard paths to give a fast algorithm for counting channels (and hence determining the parity of the number of domino tilings) in simply connected regions of the square grid. 
    more » « less
  2. online first 
    more » « less
  3. In Galperin billiards, two balls colliding with a hard wall form an analog calculator for the digits of the number π . This classical, one-dimensional three-body system (counting the hard wall) calculates the digits of π in a base determined by the ratio of the masses of the two particles. This base can be any integer, but it can also be an irrational number, or even the base can be π itself. This article reviews previous results for Galperin billiards and then pushes these results farther. We provide a complete explicit solution for the balls’ positions and velocities as a function of the collision number and time. We demonstrate that Galperin billiard can be mapped onto a two-particle Calogero-type model. We identify a second dynamical invariant for any mass ratio that provides integrability for the system, and for a sequence of specific mass ratios we identify a third dynamical invariant that establishes superintegrability. Integrability allows us to derive some new exact results for trajectories, and we apply these solutions to analyze the systematic errors that occur in calculating the digits of π with Galperin billiards, including curious cases with irrational number bases. 
    more » « less
  4. null (Ed.)