skip to main content

Title: Energies, transition probabilities, predissociation rates, and lifetimes of the ${{\rm{H}}}_{2}$, HD, and ${{\rm{D}}}_{2}$ $c{}^{3}{{\rm{\Pi }}}_{u}^{-}$ state
Authors:
; ; ; ; ;
Publication Date:
NSF-PAR ID:
10022411
Journal Name:
Journal of Physics B: Atomic, Molecular and Optical Physics
Volume:
50
Issue:
3
Page Range or eLocation-ID:
035101
ISSN:
0953-4075
Publisher:
IOP Publishing
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Quantum chromodynamics, the theory of the strong force, describes interactions of coloured quarks and gluons and the formation of hadronic matter. Conventional hadronic matter consists of baryons and mesons made of three quarks and quark-antiquark pairs, respectively. Particles with an alternative quark content are known as exotic states. Here a study is reported of an exotic narrow state in the D 0 D 0 π + mass spectrum just below the D *+ D 0 mass threshold produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The state is consistent with the ground isoscalarmore »$${{{{{{\rm{T}}}}}}}_{{{{{{\rm{c}}}}}}{{{{{\rm{c}}}}}}}^{+}$$ T c c + tetraquark with a quark content of $${{{{{\rm{c}}}}}}{{{{{\rm{c}}}}}}\overline{{{{{{\rm{u}}}}}}}\overline{{{{{{\rm{d}}}}}}}$$ c c u ¯ d ¯ and spin-parity quantum numbers J P  = 1 + . Study of the DD mass spectra disfavours interpretation of the resonance as the isovector state. The decay structure via intermediate off-shell D *+ mesons is consistent with the observed D 0 π + mass distribution. To analyse the mass of the resonance and its coupling to the D * D system, a dedicated model is developed under the assumption of an isoscalar axial-vector $${{{{{{\rm{T}}}}}}}_{{{{{{\rm{c}}}}}}{{{{{\rm{c}}}}}}}^{+}$$ T c c + state decaying to the D * D channel. Using this model, resonance parameters including the pole position, scattering length, effective range and compositeness are determined to reveal important information about the nature of the $${{{{{{\rm{T}}}}}}}_{{{{{{\rm{c}}}}}}{{{{{\rm{c}}}}}}}^{+}$$ T c c + state. In addition, an unexpected dependence of the production rate on track multiplicity is observed.« less
  2. Most of the health monitoring applications for response plans are used to alert or notify the users in case of emergency situations. Response plans help in overcoming an emergency scenario in case of a disaster. On several occasions, the person of interest receives medical attention, once there is an on-set of the medical condition. With current smart healthcare facilities, where there are advantages of monitoring one's health on a daily basis, a person does not need to wait to be critically ill or meet with a disaster in order to receive necessary medical services. Leveraging the advantages of smart healthcaremore »architectures in this research, we propose a smart rapid medical response plan, which monitors the physiological signs of people in a community and gives regular feedback or alerts the hospitals accordingly. The proposed framework provides feedback on different scales by ensuring the well-being of the individuals and alerting them to be cautious towards potential health issues. The routing of these sensor networks based on the emergency level is demonstrated using an open-source tool, CupCarbon. The proposed framework was simulated using the ZigBee radio standard and the overall simulation time for 40 nodes was 95 seconds.« less