When a piece of fruit is in a bowl, and the bowl is on a table, we appreciate not only the individual objects and their features, but also the relations containment and support, which abstract away from the particular objects involved. Independent representation of roles (e.g., containers vs. supporters) and “fillers” of those roles (e.g., bowls vs. cups, tables vs. chairs) is a core principle of language and higher-level reasoning. But does such role-filler independence also arise in automatic visual processing? Here, we show that it does, by exploring a surprising error that such independence can produce. In four experiments, participants saw a stream of images containing different objects arranged in force-dynamic relations—e.g., a phone contained in a basket, a marker resting on a garbage can, or a knife sitting in a cup. Participants had to respond to a single target image (e.g., a phone in a basket) within a stream of distractors presented under time constraints. Surprisingly, even though participants completed this task quickly and accurately, they false-alarmed more often to images matching the target’s relational category than to those that did not—even when those images involved completely different objects. In other words, participants searching for a phone in a basket were more likely to mistakenly respond to a knife in a cup than to a marker on a garbage can. Follow-up experiments ruled out strategic responses and also controlled for various confounding image features. We suggest that visual processing represents relations abstractly, in ways that separate roles from fillers.
- PAR ID:
- 10023244
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Physical Oceanography
- Volume:
- 47
- Issue:
- 3
- ISSN:
- 0022-3670
- Page Range / eLocation ID:
- 485 to 498
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
We consider the dynamics of a pendulum made of a rigid ring attached to an elastic filament immersed in a flowing soap film. The system shows an oscillatory instability whose onset is a function of the flow speed, length of the supporting string, the ring mass, and ring radius. We characterize this system and show that there are different regimes where the frequency is dependent or independent of the pendulum length depending on the relative magnitude of the added-mass. Although the system is an infinite-dimensional, we can explain many of our results in terms of a one degree-of-freedom system corresponding to a forced pendulum. Indeed, using the vorticity measured via particle imaging velocimetry allows us to make the model quantitative, and a comparison with our experimental results shows we can capture the basic phenomenology of this system.