skip to main content


Title: The Impact of Storm Tracks on Warm-Season Precipitation in the Midwest: Contrasting the 1988 Drought and 1993 Flood
To assess the role of cyclone tracks in contributing to floods and droughts, we highlight the role of midlatitude cyclones played in the 1988 drought and the 1993 flood. Our results demonstrate that the 1988 drought featured a poleward-displaced cyclone track with a reduced role for cyclone-induced precipitation, especially in the spring of 1988. The 1993 flood featured a cyclone track from Mexico northeast to Missouri in the spring, while the summer featured two cyclone tracks: one in the southwestern US and the other across Canada linked to the right-entrance and left-exit regions of a strong 200 hPa Jetstream across the upper Midwest. Enhanced 850 hPa inflow from the Caribbean northeast to the Midwest with high precipitable water values occurred in conjunction with the right entrance portion of the 200 hPa Jetstream. Linking storm tracks and the 200 hPa Jetstream to a storm-rain index for the Midwest showed that these extreme events conformed to features of the general circulation normally associated with wet/dry episodes in the warm half of the year. Although El Niño did not play a role in the 1993 flood, the 1988 drought was associated with a poleward displacement of cyclone tracks in response to La Niña.  more » « less
Award ID(s):
1355406
NSF-PAR ID:
10023576
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Advances in Meteorology
Volume:
2016
ISSN:
1687-9309
Page Range / eLocation ID:
1 to 11
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Extratropical cyclones develop in regions of enhanced baroclinicity and progress along climatological storm tracks. Numerous studies have noted an influence of terrestrial snow cover on atmospheric baroclinicity. However, these studies have less typically examined the role that continental snow cover extent and changes anticipated with anthropogenic climate change have on cyclones’ intensities, trajectories, and precipitation characteristics. Here, we examined how projected future poleward shifts in North American snow extent influence extratropical cyclones. We imposed 10th, 50th, and 90th percentile values of snow retreat between the late 20th and 21st centuries as projected by 14 Coupled Model Intercomparison Project Phase Five (CMIP5) models to alter snow extent underlying 15 historical cold-season cyclones that tracked over the North American Great Plains and were faithfully reproduced in control model cases, providing a comprehensive set of model runs to evaluate hypotheses. Simulations by the Advanced Research version of the Weather Research and Forecast Model (WRF-ARW) were initialized at four days prior to cyclogenesis. Cyclone trajectories moved on average poleward (μ = 27 +/− σ = 17 km) in response to reduced snow extent while the maximum sea-level pressure deepened (μ = −0.48 +/− σ = 0.8 hPa) with greater snow removed. A significant linear correlation was observed between the area of snow removed and mean trajectory deviation (r2 = 0.23), especially in mid-winter (r2 = 0.59), as well as a similar relationship for maximum change in sea-level pressure (r2 = 0.17). Across all simulations, 82% of the perturbed simulation cyclones decreased in average central sea-level pressure (SLP) compared to the corresponding control simulation. Near-surface wind speed increased, as did precipitation, in 86% of cases with a preferred phase change from the solid to liquid state due to warming, although the trends did not correlate with the snow retreat magnitude. Our results, consistent with prior studies noting some role for the enhanced baroclinity of the snow line in modulating storm track and intensity, provide a benchmark to evaluate future snow cover retreat impacts on mid-latitude weather systems. 
    more » « less
  2. Abstract

    Flash flooding in the arid/semiarid southwestern United States is frequently associated with convective rainfall during the North American monsoon. In this study, we examine flood-producing storms in central Arizona based on analyses of dense rain gauge observations and stream gauging records as well as North American Regional Reanalysis fields. Our storm catalog consists of 102 storm events during the period of 1988–2014. Synoptic conditions for flood-producing storms are characterized based on principal component analyses. Four dominant synoptic modes are identified, with the first two modes explaining approximately 50% of the variance of the 500-hPa geopotential height. The transitional synoptic pattern from the North American monsoon regime to midlatitude systems is a critical large-scale feature for extreme rainfall and flooding in central Arizona. Contrasting spatial rainfall organizations and storm environment under the four synoptic modes highlights the role of interactions among synoptic conditions, mesoscale processes, and complex terrains in determining space–time variability of convective activities and flash flood hazards in central Arizona. We characterize structure and evolution properties of flood-producing storms based on storm tracking algorithms and 3D radar reflectivity. Fast-moving storm elements can be important ingredients for flash floods in the arid/semiarid southwestern United States. Contrasting storm properties for cloudburst storms highlight the wide spectrum of convective intensities for extreme rain rates in the arid/semiarid southwestern United States and exhibit comparable vertical structures to their counterparts in the eastern United States.

     
    more » « less
  3. Abstract

    Evaluating cyclone tracks in climate models represents an excellent way to evaluate their ability to simulate synoptic‐scale phenomena. Cyclone tracks were generated from two free‐runs from the National Centers for Environmental Prediction Climate Forecast System (CFSv1) model for the Southern Hemisphere (SH), and compared with cyclone tracks generated from CFS reanalysis and ERA Interim data from 1979 to 2016. It is demonstrated that CFSv1 is capable of simulating realistic SH cyclone track climatology for both intensity and frequency. The CFSv1's ability to capture interannual variability is also highlighted. Specifically, the impacts of the Antarctic Oscillation (AAO), El Niño/Southern Oscillation (ENSO), and the Indian Ocean Dipole (IOD) on cyclone track frequency and intensity were assessed. The CFSv1 exhibits an annular structure in frequency and intensity in response to the AAO. For the reanalysis data, AAO cyclone frequency is less annular in the South Pacific especially during Austral Summer, possibly due to a positive trend in the AAO in recent decades. To test this, a reconstruction of cyclone tracks for ERA40 data from 1958 to 2001 produces a more annular structure. The response of cyclone tracks due to ENSO is fairly robust, with the reanalysis datasets and one member of the CFSv1 producing a pattern of cyclone variability consistent with the Pacific South American teleconnection pattern. In contrast, the cyclone frequency and intensity response to the IOD shows little agreement between reanalysis and CFSv1. An examination of 200‐hPa stream function supports the CFS model producing a teleconnection response to ENSO but not the IOD, possibly due to anomalous heating generated from the IOD being too small. Our results suggest that assessing interannual variability of cyclone tracks in current state‐of‐the‐art models be done with large‐number ensembles when possible, especially when considering sensitivity to initial conditions and the magnitude of external forcing.

     
    more » « less
  4. Abstract

    Elevated mixed layers (EMLs) influence the severe convective storm climatology in the contiguous United States (CONUS), playing an important role in the initiation, sustenance, and suppression of storms. This study creates a high-resolution climatology of the EML to analyze variability and potential changes in EML frequency and characteristics for the first time. An objective algorithm is applied to ERA5 to detect EMLs, defined in part as layers of steep lapse rates (≥8.0°C km−1) at least 200 hPa thick, in the CONUS and northern Mexico from 1979 to 2021. EMLs are most frequent over the Great Plains in spring and summer, with a standard deviation of 4–10 EML days per year highlighting sizable interannual variability. Mean convective inhibition associated with the EML’s capping inversion suggests many EMLs prohibit convection, although—like nearly all EML characteristics—there is considerable spread and notable seasonal variability. In the High Plains, statistically significant increases in EML days (4–5 more days per decade) coincide with warmer EML bases and steeper EML lapse rates, driven by warming and drying in the low levels of the western CONUS during the study period. Additionally, increases in EML base temperatures result in significantly more EML-related convective inhibition over the Great Plains, which may continue to have implications for convective storm frequency, intensity, severe perils, and precipitation if this trend persists.

    Significance Statement

    Elevated mixed layers (EMLs) play a role in the spatiotemporal frequency of severe convective storms and precipitation across the contiguous United States and northern Mexico. This research creates a detailed EML climatology from a modern reanalysis dataset to uncover patterns and potential changes in EML frequency and associated meteorological characteristics. EMLs are most common over the Great Plains in spring and summer, but show significant variability year-to-year. Robust increases in the number of days with EMLs have occurred since 1979 across the High Plains. Lapse rates associated with EMLs have trended steeper, in part due to warmer EML base temperatures. This has resulted in increasing EML convective inhibition, which has important implications for regional climate.

     
    more » « less
  5. Abstract The physical mechanisms whereby the mean and transient circulation anomalies associated with the North Atlantic Oscillation (NAO) drive winter mean precipitation anomalies across the North Atlantic Ocean, Europe, and the Mediterranean Sea region are investigated using the European Centre for Medium-Range Weather Forecasts interim reanalysis. A moisture budget decomposition is used to identify the contribution of the anomalies in evaporation, the mean flow, storm tracks and the role of moisture convergence and advection. Over the eastern North Atlantic, Europe, and the Mediterranean, precipitation anomalies are primarily driven by the mean flow anomalies with, for a positive NAO, anomalous moist advection causing enhanced precipitation in the northern British Isles and Scandinavia and anomalous mean flow moisture divergence causing drying over continental Europe and the Mediterranean region. Transient eddy moisture fluxes work primarily to oppose the anomalies in precipitation minus evaporation generated by the mean flow, but shifts in storm-track location and intensity help to explain regional details of the precipitation anomaly pattern. The extreme seasonal precipitation anomalies that occurred during the two winters with the most positive (1988/89) and negative (2009/10) NAO indices are also explained by NAO-associated mean flow moisture convergence anomalies. 
    more » « less