skip to main content


Title: Winter mean lower tropospheric moisture over the Maritime Continent as a climate model diagnostic metric for the propagation of the Madden-Julian oscillation: Winter Mean Moisture as a MJO Metric
NSF-PAR ID:
10023734
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Geophysical Research Letters
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Previous studies have shown that increasing moisture convergence by transient eddies will cause winter precipitation increase in the future over the coastal lands in Eastern North America (ENA) and East Asia (EA). Using moisture budget and composite analyses, we investigate the physical processes responsible for the change of eddy moisture convergence and compare them between the two regions. We find that in addition to the “wet get wetter and dry get drier” (“WWDD”) thermodynamic effect, changes in eddy moisture advection cause enhanced eddy moisture convergence north of 30°N and divergence to the south, with magnitudes comparable to the “WWDD” effect in these regions. The north‐south dipole pattern is reflected in the precipitation change of drying over the southern coastal lands in the future climate. It is caused by enhanced downgradient eddy moisture transport in the north and upgradient eddy moisture transport in the south, which is explained by the locations of the maximum magnitude of eddy relative humidity in conjunction with increase of mean saturation specific humidity. The eddy dynamic intensities associated with extreme precipitation events are found to increase in the future, contributing to the increase of eddy moisture convergence, but it plays a secondary role. The strong similarities of the underlying processes of eddy moisture change between ENA and EA suggest robust response of the spatially varying role of eddies in impacting future change of regional precipitation in ENA and EA.

     
    more » « less
  2. Abstract

    Satellite observations of middle-atmosphere temperature are used to investigate the short-term global response to planetary wave activity in the winter stratosphere. The focus is on the relation between variations in the winter and summer hemispheres. The analysis uses observations fromThermosphere–Ionosphere–Mesosphere Energetics and Dynamics(TIMED) Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) for 2002–21 andAuraMicrowave Limb Sounder (MLS) for 2004–21, and reanalysis temperatures and winds from MERRA-2 for 2002–21. We calculate temporal correlations of the Eliassen–Palm flux divergence in the winter stratosphere with global temperature. Results show a robust perturbation extending to midlatitudes of the Southern Hemisphere (SH) stratosphere during Northern Hemisphere (NH) winter. An increase in wave forcing is followed by a decrease in temperatures over the depth of the stratosphere in the SH, peaking at a lag of 3 days. Summer mesospheric temperature perturbations of the opposite sign are seen in many winters. Comparable signals in the NH summer middle-atmosphere are present during some SH winters but are weaker and less consistent than those in the SH during NH winter. A diagnostic evaluation of the patterns of correlation, the mesospheric zonal winds, and the stability criteria suggests that the temperature perturbations in the midlatitude summer mesosphere are more closely associated with the summer stratosphere directly below than with the wave activity in the winter stratosphere. This suggests that the interhemispheric coupling in the stratosphere is driving or contributing to the coupling between the winter stratosphere and the summer mesosphere that has been reported in several investigations.

    Significance Statement

    There are many instances in which one part of the atmosphere is found to regularly respond to perturbations occurring in a distant region. In this study, we use observations to investigate one such pattern: temperature changes at high altitude (60–100 km) in the summer that follow dynamical changes near the winter pole at 40–60 km. Such analysis is useful to understand which physical processes contribute to the global connectivity and variability of the atmosphere.

     
    more » « less
  3. Abstract

    Warming due to climate change has profound impacts on regional crop yields, and this includes impacts from rising mean growing season temperature and heat stress events. Adapting to these two impacts could be substantially different, and the overall contribution of these two factors on the effects of climate warming and crop yield is not known. This study used the improved WheatGrow model, which can reproduce the effects of temperature change and heat stress, along with detailed information from 19 location-specific cultivars and local agronomic management practices at 129 research stations across the main wheat-producing region of China, to quantify the regional impacts of temperature increase and heat stress separately on wheat in China. Historical climate, plus two future low-warming scenarios (1.5 °C/2.0 °C warming above pre-industrial) and one future high-warming scenario (RCP8.5), were applied using the crop model, without considering elevated CO2effects. The results showed that heat stress and its yield impact were more severe in the cooler northern sub-regions than the warmer southern sub-regions with historical and future warming scenarios. Heat stress was estimated to reduce wheat yield in most of northern sub-regions by 2.0%–4.0% (up to 29% in extreme years) under the historical climate. Climate warming is projected to increase heat stress events in frequency and extent, especially in northern sub-regions. Surprisingly, higher warming did not result in more yield-impacting heat stress compared to low-warming, due to advanced phenology with mean warming and finally avoiding heat stress events during grain filling in summer. Most negative impacts of climate warming are attributed to increasing mean growing-season temperature, while changes in heat stress are projected to reduce wheat yields by an additional 1.0%–1.5% in northern sub-regions. Adapting to climate change in China must consider the different regional and temperature impacts to be effective.

     
    more » « less
  4. Abstract

    The joint influence of the stratospheric quasi‐biennial oscillation (QBO) and the El Niño Southern Oscillation (ENSO) on the polar vortex, subtropical westerly jets (STJs), and wave patterns during boreal winter is investigated in 40 years (1979–2018) of monthly mean ERA‐Interim reanalyses. The method of Wallace et al. (1993),https://doi.org/10.1175/15200469(1993)050<1751:ROTESQ>2.0.CO;2is used to conduct a QBO phase angle sweep. QBO westerly (W) and easterly (E) composites are then segregated by the phase of ENSO. Two pathways are described by which the QBO mean meridional circulation (MMC) influences the northern winter hemisphere. The “stratospheric pathway” modulates stratospheric planetary wave absorption via the Holton‐Tan mechanism. The “tropospheric pathway” modulates the tropical and subtropical upper troposphere and lower stratosphere. QBO MMC anomalies exhibit a checkerboard pattern in temperature and arched structures in zonal wind which extend into midlatitudes, and are stronger on the winter side. During QBO W, the polar vortex and STJs are enhanced. QBO signals in the polar vortex are amplified during La Niña. During El Niño and QBO W, the strongest STJs occur, and a warm pole/wave two pattern is found. During El Niño and QBO E, a trough is found over Eurasia and a ridge over the North Atlantic, in a wave one pattern. El Niño diminishes QBO anomalies in the tropical stratosphere and reduces the poleward extent and amplitude of the QBO MMC, thereby influencing the stratospheric pathway. Effects on the boreal winter hemisphere are attributed to the combined influence of the QBO and ENSO via both pathways.

     
    more » « less