skip to main content


Title: Comparative studies of long-wave laser-induced breakdown spectroscopy emissions excited at 1064 µm and eye-safe 1574 µm
NSF-PAR ID:
10023927
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
25
Issue:
7
ISSN:
1094-4087
Page Range / eLocation ID:
7238
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Partial laser treatment is introduced to carbon‐based microfibers to generate excellent photon sensing capability without bias. This treatment brings about a Seebeck coefficient distribution along the sample's length, out of which a photovoltage with no external bias is generated and sensed. Using a line‐shaped laser spot, carbon microfiber (CMF), graphene microfiber (GMF), and graphene aerogel fiber (GAF) are investigated for their response to µm‐scale photon irradiation. A higher sensitivity for the incident photon is found for the GAF with no position sensitivity. More Seebeck coefficient variation is also observed for the GAF considering the amount of laser power used for the laser treatment. A weaker Seebeck coefficient spatial variation is observed for the GMF compared with the GAF. However, its photovoltage shows an abrupt magnitude change from the laser‐treated region to the non‐treated one. Despite the low spatial variation of the Seebeck coefficient for the CMF, it features an excellent and accurate position‐sensitive photoresponse with polarization change over a distance of ≈100 µm. Such unique capability prompts novel applications in using partially annealed CMF for sensing the position of optical beams at the microscale.

     
    more » « less
  2. Nguyen, Nam-Trung ; Munoz, Rodrigo Alejandro ; Kalinke, Cristiane (Ed.)
    Engineering microfluidic devices relies on the ability to manufacture sub-100 micrometer fluidic channels. Conventional lithographic methods provide high resolution but require costly exposure tools and outsourcing of masks, which extends the turnaround time to several days. The desire to accelerate design/test cycles has motivated the rapid prototyping of microfluidic channels; however, many of these methods (e.g., laser cutters, craft cutters, fused deposition modeling) have feature sizes of several hundred microns or more. In this paper, we describe a 1-day process for fabricating sub-100 µm channels, leveraging a low-cost (USD 600) 8K digital light projection (DLP) 3D resin printer. The soft lithography process includes mold printing, post-treatment, and casting polydimethylsiloxane (PDMS) elastomer. The process can produce microchannels with 44 µm lateral resolution and 25 µm height, posts as small as 400 µm, aspect ratio up to 7, structures with varying z-height, integrated reservoirs for fluidic connections, and a built-in tray for casting. We discuss strategies to obtain reliable structures, prevent mold warpage, facilitate curing and removal of PDMS during molding, and recycle the solvents used in the process. To our knowledge, this is the first low-cost 3D printer that prints extruded structures that can mold sub-100 µm channels, providing a balance between resolution, turnaround time, and cost (~USD 5 for a 2 × 5 × 0.5 cm^3 chip) that will be attractive for many microfluidics labs. 
    more » « less