skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Rapid localized heating of graphene coating on a silicon mold by induction for precision molding of polymer optics
PAR ID:
10024129
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
42
Issue:
7
ISSN:
0146-9592; OPLEDP
Page Range / eLocation ID:
Article No. 1369
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. null (Ed.)
  3. Recent advancements in nanofabrication technology has led to commercialization of single-chip polarization and color-polarization imaging sensors in the visible spectrum. Novel applications have arisen with the emergence of these sensors leading to questions about noise in the reconstructed polarization images. In this paper, we provide theoretical analysis for the input and output referred noise for the angle and degree of linear polarization information. We validated our theoretical model with experimental data collected from a division of focal plane polarization sensor. Our data indicates that the noise in the angle of polarization images depends on both incident light intensity and degree of linear polarization and is independent of the incident angle of polarization. However, noise in degree of linear polarization images depends on all three parameters: incident light intensity, angle and degree of linear polarization. This theoretical model can help guide the development of imaging setups to record optimal polarization information.

     
    more » « less