Abstract Arboviruses transmitted mainly byAedes(Stegomyia)aegyptiandAe. albopictus, including dengue, chikungunya, and Zika viruses, and yellow fever virus in urban settings, pose an escalating global threat. Existing risk maps, often hampered by surveillance biases, may underestimate or misrepresent the true distribution of these diseases and do not incorporate epidemiological similarities despite shared vector species. We address this by generating new global environmental suitability maps forAedes-borne arboviruses using a multi-disease ecological niche model with a nested surveillance model fit to a dataset of over 21,000 occurrence points. This reveals a convergence in suitability around a common global distribution with recent spread of chikungunya and Zika closely aligning with areas suitable for dengue. We estimate that 5.66 (95% confidence interval 5.64-5.68) billion people live in areas suitable for dengue, chikungunya and Zika and 1.54 (1.53-1.54) billion people for yellow fever. We find large national and subnational differences in surveillance capabilities with higher income more accessible areas more likely to detect, diagnose and report viral diseases, which may have led to overestimation of risk in the United States and Europe. When combined with estimates of uncertainty, these suitability maps can be used by ministries of health to target limited surveillance and intervention resources in new strategies against these emerging threats.
more »
« less
Zika and chikungunya: mosquito-borne viruses in a changing world: Global change and vectors of chikungunya and Zika
- Award ID(s):
- 1640780
- PAR ID:
- 10024797
- Date Published:
- Journal Name:
- Annals of the New York Academy of Sciences
- ISSN:
- 0077-8923
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Due to the recent outbreak of the Zika virus (ZIKV) in several regions, rapid, and accurate methods to diagnose Zika infection are in demand, particularly in regions that are on the frontline of a ZIKV outbreak. In this paper, three diagnostic methods for ZIKV are considered. Viral isolation is the gold standard for detection; this approach can involve incubation of cell cultures. Serological identification is based on the interactions between viral antigens and immunoglobulin G or immunoglobulin M antibodies; cross-reactivity with other types of flaviviruses can cause reduced specificity with this approach. Molecular confirmation, such as reverse transcription polymerase chain reaction (RT–PCR), involves reverse transcription of RNA and amplification of DNA. Quantitative analysis based on real-time RT–PCR can be undertaken by comparing fluorescence measurements against previously developed standards. A recently developed programmable paper-based detection approach can provide low-cost and rapid analysis. These viral identification and viral genetic analysis approaches play crucial roles in understanding the transmission of ZIKV.more » « less
An official website of the United States government

