skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Air entrainment by breaking waves: AIR ENTRAINMENT BY BREAKING WAVES
Award ID(s):
1634289
PAR ID:
10025116
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
44
Issue:
8
ISSN:
0094-8276
Page Range / eLocation ID:
3779 to 3787
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We experimentally investigate the depth distributions and dynamics of air bubbles entrained by breaking waves in a wind‐wave channel over a range of breaking wave conditions using high‐resolution imaging and three‐dimensional bubble tracking. Below the wave troughs, the bubble concentration decays exponentially with depth. Patches of entrained bubbles are identified for each breaking wave, and statistics describing the horizontal and vertical transport are presented. Aggregating our results, we find a stream‐wise transport faster than the associated Stokes drift and modified Stokes drift for buoyant particles, which is an effect not accounted for in current models of bubble transport. This enhancement in transport is attributed to the flow field induced by the breaking waves and is relevant for the transport of bubbles, oil droplets, and microplastics at the ocean surface. 
    more » « less
  2. Abstract A strong mountain wave, observed over Central Europe on 12 January 2016, is simulated in 2D under two fixed background wind conditions representing opposite tidal phases. The aim of the simulation is to investigate the breaking of the mountain wave and subsequent generation of nonprimary waves in the upper atmosphere. The model results show that the mountain wave first breaks as it approaches a mesospheric critical level creating turbulence on horizontal scales of 8–30 km. These turbulence scales couple directly to horizontal secondary waves scales, but those scales are prevented from reaching the thermosphere by the tidal winds, which act like a filter. Initial secondary waves that can reach the thermosphere range from 60 to 120 km in horizontal scale and are influenced by the scales of the horizontal and vertical forcing associated with wave breaking at mountain wave zonal phase width, and horizontal wavelength scales. Large‐scale nonprimary waves dominate over the whole duration of the simulation with horizontal scales of 107–300 km and periods of 11–22 minutes. The thermosphere winds heavily influence the time‐averaged spatial distribution of wave forcing in the thermosphere, which peaks at 150 km altitude and occurs both westward and eastward of the source in the 2 UT background simulation and primarily eastward of the source in the 7 UT background simulation. The forcing amplitude is2that of the primary mountain wave breaking and dissipation. This suggests that nonprimary waves play a significant role in gravity waves dynamics and improved understanding of the thermospheric winds is crucial to understanding their forcing distribution. 
    more » « less
  3. Moist heatwaves in the tropics and subtropics pose substantial risks to society, yet the dynamics governing their intensity are not fully understood. The onset of deep convection arising from hot, moist near-surface air has been thought to limit the magnitude of moist heatwaves. Here we use reanalysis data, output from the Coupled Model Intercomparison Project Phase 6 and model entrainment perturbation experiments to show that entrainment of unsaturated air in the lower-free troposphere (roughly 1–3 km above the surface) limits deep convection, thereby allowing much higher near-surface moist heat. Regions with large-scale subsidence and a dry lower-free troposphere, such as coastal areas adjacent to hot and arid land, are thus particularly susceptible to moist heatwaves. Even in convective regions such as the northern Indian Plain, Southeast Asia and interior South America, the lower-free tropospheric dryness strongly afects the maximum surface wet-bulb temperature. As the climate warms, the dryness (relative to saturation) of the lower-free tropospheric air increases and this allows for a larger increase of extreme moist heat, further elevating the likelihood of moist heatwaves. 
    more » « less
  4. While it has long been recognized that Lagrangian drift at the ocean surface plays a critical role in the kinematics and dynamics of upper ocean processes, only recently has the contribution of wave breaking to this drift begun to be investigated through direct numerical simulations (Deike et al. ,  J. Fluid Mech. , vol. 829, 2017, pp. 364–391; Pizzo et al. ,  J. Phys. Oceanogr. , vol. 49(4), 2019, pp. 983–992). In this work, laboratory measurements of the surface Lagrangian transport due to focusing deep-water non-breaking and breaking waves are presented. It is found that wave breaking greatly enhances mass transport, compared to non-breaking focusing wave packets. These results are in agreement with the direct numerical simulations of Deike  et al. ( J. Fluid Mech. , vol. 829, 2017, pp. 364–391), and the increased transport due to breaking agrees with their scaling argument. In particular, the transport at the surface scales with $$S$$ , the linear prediction of the maximum slope at focusing, while the surface transport due to non-breaking waves scales with $$S^{2}$$ , in agreement with the classical Stokes prediction. 
    more » « less
  5. This dataset is an accompaniment to the paper titled Statistics of bubble plumes generated by breaking surface waves, by Derakhti et al, in the Journal of Geophysical Research: Oceans. It includes extensive observations from arrays of freely drifting SWIFT buoys and shipboard systems, enabling concurrent high-resolution measurements of wind, waves, and bubble plumes. This dataset allowed us to examine the dependence of the penetration depth and fractional surface area (e.g., whitecap coverage) of bubble plumes generated by breaking surface waves on various wind and wave parameters over a wide range of sea state conditions in the North Pacific Ocean, including storms with sustained winds up to 22 m s-1 and significant wave heights up to 10 m.  Notably, this study provides the first field evidence of a direct relation between bubble plume penetration depth and whitecap coverage, suggesting that the volume of bubble plumes could be estimated by remote sensing techniques. 
    more » « less