skip to main content


Title: An Eddy Injection Method for Large-Eddy Simulations of Tornado-Like Vortices
NSF-PAR ID:
10025329
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1175
Date Published:
Journal Name:
Monthly Weather Review
Volume:
145
Issue:
5
ISSN:
0027-0644
Page Range / eLocation ID:
1937 to 1961
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The performance of eddy‐resolving global ocean–sea ice models in simulating mesoscale eddies is evaluated using six eddy‐resolving experiments forced by different atmospheric reanalysis products. Interestingly, eddy‐resolving ocean general circulation models (OGCMs) tend to simulate more (less) energetic eddy‐rich (eddy‐poor) regions with a smaller (larger) spatial extent than satellite observation, which finally shows that larger (smaller) mesoscale energy intensity (EI) is simulated in the eddy‐rich (eddy‐poor) regions. Quantitatively, there is an approximately 27%–60% overestimation of EI in the eddy‐rich regions, which are mainly located in the Kuroshio–Oyashio Extension, the Gulf Stream, and the Antarctic Circumpolar Currents regions, although the global mean EI is underestimated by 25%–45%. Apparently, the eddy kinetic energy in the eddy‐poor region is underestimated. Further analyses based on coherent mesoscale eddy properties show that the overestimation in the eddy‐rich regions is mainly attributed to mesoscale eddies’ intensity and is more prominent when mesoscale eddies are in their growth stage.

     
    more » « less
  2. Abstract We use an interannually forced version of the Parallel Ocean Program, configured to resolve mesoscale eddies, to close the global eddy potential energy (EPE) budget associated with temperature variability. By closing the EPE budget, we are able to properly investigate the role of diabatic processes in modulating mesoscale energetics in the context of other processes driving eddy–mean flow interactions. A Helmholtz decomposition of the eddy heat flux field into divergent and rotational components is applied to estimate the baroclinic conversion from mean to eddy potential energy. In doing so, an approximate two-way balance between the “divergent” baroclinic conversion and upgradient vertical eddy heat fluxes in the ocean interior is revealed, in accordance with baroclinic instability and the relaxation of isopycnal slopes. However, in the mixed layer, the EPE budget is greatly modulated by diabatic mixing, with air–sea interactions and interior diffusion playing comparable roles. Globally, this accounts for ∼60% of EPE converted to EKE (eddy kinetic energy), with the remainder being dissipated by air–sea interactions and interior mixing. A seasonal composite of baroclinic energy conversions shows that the strongest EPE to EKE conversion occurs during the summer in both hemispheres. The seasonally varying diabatic processes in the upper ocean are further shown to be closely linked to this EPE–EKE conversion seasonality, but with a lead. The peak energy dissipation through vertical mixing occurs ahead of the minimum EKE generation by 1–2 months. 
    more » « less
  3. This dataset uses trajectory data from a large set of drifters to extract and analyze displacement signals associated with coherent eddies in the Gulf of Mexico, using a multivariate wavelet ridge analysis as presented in Lilly and Pérez-Brunius (2021). The data includes eddy displacement signals for all ridges, as well as the time-varying ellipse parameters and estimated ellipse center location. The instantaneous frequency is also included, as is the instantaneous bias estimate derived by Lilly and Olhede (2012). The data are organized as appended trajectory data that can be readily separated through the use of the "ids" field.  The ridge length (\(L\)),and ridge-averaged circularity (\(\overline{\xi}\))  are also included, as is measure of statistical significance denoted by (\(\rho\)). The dataset is available for download as a NetCDF file.

    Lilly, J. M. and P. Pérez-Brunius (2021).  Extracting statistically significant eddy signals from large Lagrangian datasets using wavelet ridge analysis, with application to the Gulf of Mexico. Nonlinear Processes in Geophysics, 28: 181–212. https://doi.org/10.5194/npg-28-181-2021. 

    Lilly, J. M. and Olhede, S. C.: Analysis of modulated multivariate oscillations, IEEE T. Signal Proces., 60, 600–612, 2012. 10.1109/TSP.2011.2173681

    The GOMED database is a product of the Gulf of Mexico Research Consortium (CIGoM) and was partially funded by the CONACYT-SENER-Hydrocarbons Sector Fund, Mexico, project 201441.See database webpage with additional information, as well as request for download form (https://giola.cicese.mx/database/GOMED) {"references": ["Lilly, J. M. and Olhede, S. C.: Higher-order properties of analytic wavelets, IEEE T. Signal Proces., 57, 146\u2013160,\u00a0https://doi.org/10.1109/TSP.2008.2007607, 2009.", "Lilly, J. M. and Olhede, S. C.: Analysis of modulated multivariate oscillations, IEEE T. Signal Proces., 60, 600\u2013612, 2012."]} 
    more » « less