skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Understanding low-temperature bulk transport in samarium hexaboride without relying on in-gap bulk states
Award ID(s):
1643145
PAR ID:
10025732
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review B
Volume:
95
Issue:
19
ISSN:
2469-9950
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A bstract We study a set of CFT operators suitable for reconstructing a charged bulk scalar field ϕ in AdS 3 (dual to an operator $$ \mathcal{O} $$ O of dimension ∆ in the CFT) in the presence of a conserved spin- n current in the CFT. One has to sum a tower of smeared non-primary scalars $$ {\partial}_{+}^m{J}^{(m)} $$ ∂ + m J m , where J ( m ) are primaries with twist ∆ and spin m built from $$ \mathcal{O} $$ O and the current. The coefficients of these operators can be fixed by demanding that bulk correlators are well-defined: with a simple ansatz this requirement allows us to calculate bulk correlators directly from the CFT. They are built from specific polynomials of the kinematic invariants up to a freedom to make field redefinitions. To order 1/ N this procedure captures the dressing of the bulk scalar field by a radial generalized Wilson line. 
    more » « less
  2. A bstract According to the AdS/CFT correspondence , the geometries of certain spacetimes are fully determined by quantum states that live on their boundaries — indeed, by the von Neumann entropies of portions of those boundary states. This work investigates to what extent the geometries can be reconstructed from the entropies in polynomial time . Bouland, Fefferman, and Vazirani (2019) argued that the AdS/CFT map can be exponentially complex if one wants to reconstruct regions such as the interiors of black holes. Our main result provides a sort of converse: we show that, in the special case of a single 1D boundary divided into N “atomic regions”, if the input data consists of a list of entropies of contiguous boundary regions, and if the entropies satisfy a single inequality called Strong Subadditivity, then we can construct a graph model for the bulk in linear time. Moreover, the bulk graph is planar, it has O ( N 2 ) vertices (the information-theoretic minimum), and it’s “universal”, with only the edge weights depending on the specific entropies in question. From a combinatorial perspective, our problem boils down to an “inverse” of the famous min-cut problem: rather than being given a graph and asked to find a min-cut, here we’re given the values of min-cuts separating various sets of vertices, and need to find a weighted undirected graph consistent with those values. Our solution to this problem relies on the notion of a “bulkless” graph, which might be of independent interest for AdS/CFT. We also make initial progress on the case of multiple 1D boundaries — where the boundaries could be connected via wormholes — including an upper bound of O ( N 4 ) vertices whenever an embeddable bulk graph exists (thus putting the problem into the complexity class NP). 
    more » « less
  3. null (Ed.)