- Award ID(s):
- 1302662
- PAR ID:
- 10025957
- Date Published:
- Journal Name:
- Journal of machine learning research
- Volume:
- 51
- ISSN:
- 1533-7928
- Page Range / eLocation ID:
- 751-760
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Learning from one's mistakes is an effective human learning technique where the learners focus more on the topics where mistakes were made, so as to deepen their understanding. In this paper, we investigate if this human learning strategy can be applied in machine learning. We propose a novel machine learning method called Learning From Mistakes (LFM), wherein the learner improves its ability to learn by focusing more on the mistakes during revision. We formulate LFM as a three-stage optimization problem: 1) learner learns; 2) learner re-learns focusing on the mistakes, and; 3) learner validates its learning. We develop an efficient algorithm to solve the LFM problem. We apply the LFM framework to neural architecture search on CIFAR-10, CIFAR-100, and Imagenet. Experimental results strongly demonstrate the effectiveness of our model.more » « less
-
This paper presents a deep reinforcement learning algorithm for online accompaniment generation, with potential for real-time interactive human-machine duet improvisation. Different from offline music generation and harmonization, online music accompaniment requires the algorithm to respond to human input and generate the machine counterpart in a sequential order. We cast this as a reinforcement learning problem, where the generation agent learns a policy to generate a musical note (action) based on previously generated context (state). The key of this algorithm is the well-functioning reward model. Instead of defining it using music composition rules, we learn this model from monophonic and polyphonic training data. This model considers the compatibility of the machine-generated note with both the machine-generated context and the human-generated context. Experiments show that this algorithm is able to respond to the human part and generate a melodic, harmonic and diverse machine part. Subjective evaluations on preferences show that the proposed algorithm generates music pieces of higher quality than the baseline method.more » « less
-
We study the problem of distributed multitask learning with shared representation, where each machine aims to learn a separate, but related, task in an unknown shared low-dimensional subspaces, i.e. when the predictor matrix has low rank. We consider a setting where each task is handled by a different machine, with samples for the task available locally on the machine, and study communication-efficient methods for exploiting the shared structure.more » « less
-
Designing and/or controlling complex systems in science and engineering relies on appropriate mathematical modeling of systems dynamics. Classical differential equation based solutions in applied and computational mathematics are often computationally demanding. Recently, the connection between reduced-order models of high-dimensional differential equation systems and surrogate machine learning models has been explored. However, the focus of both existing reduced-order and machine learning models for complex systems has been how to best approximate the high fidelity model of choice. Due to high complexity and often limited training data to derive reduced-order or machine learning surrogate models, it is critical for derived reduced-order models to have reliable uncertainty quantification at the same time. In this paper, we propose such a novel framework of Bayesian reduced-order models naturally equipped with uncertainty quantification as it learns the distributions of the parameters of the reduced-order models instead of their point estimates. In particular, we develop learnable Bayesian proper orthogonal decomposition (BayPOD) that learns the distributions of both the POD projection bases and the mapping from the system input parameters to the projected scores/coefficients so that the learned BayPOD can help predict high-dimensional systems dynamics/fields as quantities of interest in different setups with reliable uncertainty estimates. The developed learnable BayPOD inherits the capability of embedding physics constraints when learning the POD-based surrogate reduced-order models, a desirable feature when studying complex systems in science and engineering applications where the available training data are limited. Furthermore, the proposed BayPOD method is an end-to-end solution, which unlike other surrogate-based methods, does not require separate POD and machine learning steps. The results from a real-world case study of the pressure field around an airfoil.more » « less
-
As machine learning methods become more powerful and capture more nuances of human behavior, biases in the dataset can shape what the model learns and is evaluated on. This paper explores and attempts to quantify the uncertainties and biases due to annotator demographics when creating sentiment analysis datasets. We ask >1000 crowdworkers to provide their demographic information and annotations for multimodal sentiment data and its component modalities. We show that demographic differences among annotators impute a significant effect on their ratings, and that these effects also occur in each component modality. We compare predictions of different state-of-the-art multimodal machine learning algorithms against annotations provided by different demographic groups, and find that changing annotator demographics can cause >4.5 in accuracy difference when determining positive versus negative sentiment. Our findings underscore the importance of accounting for crowdworker attributes, such as demographics, when building datasets, evaluating algorithms, and interpreting results for sentiment analysis.