Over the past decade, deep reinforcement learning (RL) techniques have significantly advanced robotic systems. However, due to the complex architectures of neural network models, ensuring their trustworthiness is a considerable challenge. Programmatic reinforcement learning has surfaced as a promising approach. Nonetheless, synthesizing robot-control programs remains challenging. Existing methods rely on domain-specific languages (DSLs) populated with user-defined state abstraction predicates and a library of low-level controllers as abstract actions to boot synthesis, which is impractical in unknown environments that lack such predefined components. To address this limitation, we introduce RoboScribe, a novel abstraction refinement-guided program synthesis framework that automatically derives robot state and action abstractions from raw, unsegmented task demonstrations in high-dimensional, continuous spaces. It iteratively enriches and refines an initially coarse abstraction until it generates a task-solving program over the abstracted robot environment. RoboScribe is effective in synthesizing iterative programs by inferring recurring subroutines directly from the robot’s raw, continuous state and action spaces, without needing predefined abstractions. Experimental results show that RoboScribe programs inductively generalize to long-horizon robot tasks involving arbitrary numbers of objects, outperforming baseline methods in terms of both interpretability and efficiency.
more »
« less
Near Optimal Behavior via Approximate State Abstraction
The combinatorial explosion that plagues planning and reinforcement learning (RL) algorithms can be moderated using state abstraction. Prohibitively large task representations can be condensed such that essential information is preserved, and consequently, solutions are tractably computable. However, exact abstractions, which treat only fully-identical situations as equivalent, fail to present opportunities for abstraction in environments where no two situations are exactly alike. In this work, we investigate approximate state abstractions, which treat nearly-identical situations as equivalent. We present theoretical guarantees of the quality of behaviors derived from four types of approximate abstractions. Additionally, we empirically demonstrate that approximate abstractions lead to reduction in task complexity and bounded loss of optimality of behavior in a variety of environments.
more »
« less
- Award ID(s):
- 1637614
- PAR ID:
- 10026422
- Date Published:
- Journal Name:
- ICML
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We consider abstraction-based design of output-feedback controllers for dynamical systemswith a finite set of inputs and outputs against specifications in linear-time temporal logic. The usual procedure for abstraction-based controller design (ABCD) first constructs a finite-state abstraction of the underlying dynamical system, and second, uses reactive synthesis techniques to compute an abstract state-feedback controller on the abstraction. In this context, our contribution is two-fold: (I) we define a suitable relation between the original systemand its abstractionwhich characterizes the soundness and completeness conditions for an abstract state-feedback controller to be refined to a concrete output-feedback controller for the original system, and (II) we provide an algorithm to compute a sound finite-state abstraction fulfilling this relation. Our relation generalizes feedback-refinement relations fromABCD with state-feedback. Our algorithm for constructing sound finitestate abstractions is inspired by the simultaneous reachability and bisimulation minimization algorithm of Lee and Yannakakis. We lift their idea to the computation of an observation-equivalent system and show how sound abstractions can be obtained by stopping this algorithm at any point. Additionally, our new algorithm produces a realization of the topological closure of the input/output behavior of the original system if it is finite state realizable.more » « less
-
General-purpose agents require fine-grained controls and rich sensory inputs to perform a wide range of tasks. However, this complexity often leads to intractable decision-making. Traditionally, agents are provided with task-specific action and observation spaces to mitigate this challenge, but this reduces autonomy. Instead, agents must be capable of building state-action spaces at the correct abstraction level from their sensorimotor experiences. We leverage the structure of a given set of temporally-extended actions to learn abstract Markov decision processes (MDPs) that operate at a higher level of temporal and state granularity. We characterize state abstractions necessary to ensure that planning with these skills, by simulating trajectories in the abstract MDP, results in policies with bounded value loss in the original MDP. We evaluate our approach in goal-based navigation environments that require continuous abstract states to plan successfully and show that abstract model learning improves the sample efficiency of planning and learning.more » « less
-
Cache side-channel attacks leverage secret-dependent footprints in CPU cache to steal confidential information, such as encryption keys. Due to the lack of a proper abstraction for reasoning about cache side channels, existing static program analysis tools that can quantify or mitigate cache side channels are built on very different kinds of abstractions. As a consequence, it is hard to bridge advances in quantification and mitigation research. Moreover, existing abstractions lead to imprecise results. In this paper, we present a novel abstraction, called differential set, for analyzing cache side channels at compile time. A distinguishing feature of differential sets is that it allows compositional and precise reasoning about cache side channels. Moreover, it is the first abstraction that carries sufficient information for both side channel quantification and mitigation. Based on this new abstraction, we develop a static analysis tool DSA that automatically quantifies and mitigates cache side channel leakage at the same time. Experimental evaluation on a set of commonly used benchmarks shows that DSA can produce more precise leakage bound as well as mitigated code with fewer memory footprints, when compared with state-of-the-art tools that only quantify or mitigate cache side channel leakage.more » « less
-
Scientific models describe natural phenomena at different levels of abstraction. Abstract descriptions can provide the basis for interventions on the system and explanation of observed phenomena at a level of granularity that is coarser than the most fundamental account of the system. Beckers and Halpern [2019], building on work of Rubenstein et al.[2017], developed an account of \emph{abstraction} for causal models that is exact. Here we extend this account to the more realistic case where an abstract causal model offers only an approximation of the underlying system. We show how the resulting account handles the discrepancy that can arise between low- and high-level causal models of the same system, and in the process provide an account of how one causal model approximates another, a topic of independent interest. Finally, we extend the account of approximate abstractions to probabilistic causal models, indicating how and where uncertainty can enter into an approximate abstraction.more » « less
An official website of the United States government

